终身会员
搜索
    上传资料 赚现金

    【历年真题】湖南省湘潭市中考数学模拟真题练习 卷(Ⅱ)(含答案及解析)

    立即下载
    加入资料篮
    【历年真题】湖南省湘潭市中考数学模拟真题练习 卷(Ⅱ)(含答案及解析)第1页
    【历年真题】湖南省湘潭市中考数学模拟真题练习 卷(Ⅱ)(含答案及解析)第2页
    【历年真题】湖南省湘潭市中考数学模拟真题练习 卷(Ⅱ)(含答案及解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【历年真题】湖南省湘潭市中考数学模拟真题练习 卷(Ⅱ)(含答案及解析)

    展开

    这是一份【历年真题】湖南省湘潭市中考数学模拟真题练习 卷(Ⅱ)(含答案及解析),共26页。试卷主要包含了下列现象,一元二次方程的根为等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    A.4米B.10米C.4米D.12米
    2、已知单项式5xayb+2的次数是3次,则a+b的值是( )
    A.1B.3C.4D.0
    3、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
    A.abB.a+bC.abD.a
    4、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )
    A.两人前行过程中的速度为180米/分B.的值是15,的值是2700
    C.爸爸返回时的速度为90米/分D.运动18分钟或31分钟时,两人相距810米
    5、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
    A.B.y随x的增大而增大
    C.当时,D.关于x的方程的解是
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    6、如图,在中,,D是BC的中点,垂足为D,交AB于点E,连接CE.若,,则BE的长为( )
    A.3B.C.4D.
    7、下列现象:
    ①用两个钉子就可以把木条固定在墙上
    ②从A地到B地架设电线,总是尽可能沿着线段AB架设
    ③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线
    ④把弯曲的公路改直,就能缩短路程
    其中能用“两点之间线段最短”来解释的现象有( )
    A.①④B.①③C.②④D.③④
    8、一元二次方程的根为( )
    A.B.C.D.
    9、有理数a,b在数轴上对应的位置如图所示,则下列结论正确的是( ).
    A.B.C.D.
    10、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为( )
    A.1B.2C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、定义:有一组对边相等而另一组对边不相等的凸四边形叫做“对等四边形”,如图,在中,,点A在边BP上,点D在边CP上,如果,,,四边形ABCD为“对等四边形”,那么CD的长为_____________.
    2、为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:
    则这组数据的众数是______;平均数是______.
    3、一张长方形纸片沿直线折成如图所示图案,已知,则__.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    4、不等式的解集是__.
    5、已知点A(x1,y1)、B(x2,y2)为函数y=﹣2(x﹣1)2+3的图象上的两点,若x1<x2<0,则y1_____y2(填“>”、“=”或“<”),
    三、解答题(5小题,每小题10分,共计50分)
    1、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题:
    (1)本次调查共抽取了多少名学生?
    (2)①请补全条形统计图;
    ②求出扇形统计图中表示“及格”的扇形的圆心角度数.
    (3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?
    2、(1)如图1,四边形ABCD是矩形,以对角线AC为直角边作等腰直角三角形EAC,且.请证明:;
    (2)图2,在矩形ABCD中,,,点P是AD上一点,且,连接PC,以PC为直角边作等腰直角三角形EPC,,设,,请求出y与x的函数关系式;
    (3)在(2)的条件下,连接BE,若点P在线段AD上运动,在点P的运动过程中,当是等腰三角形时,求AP的长.
    3、如图,直线AB、CD相交于点O,OE平分∠BOD,且.求∠AOC和∠DOE的度数.
    4、如图,平面内有两个点A,B.应用量角器、圆规和带刻度的直尺完成下列画图或测量:
    (1)经过A,B两点画直线,写出你发现的基本事实;
    (2)利用量角器在直线AB一侧画;
    (3)在射线BC上用圆规截取BD=AB(保留作图痕迹);
    (4)连接AD,取AD中点E,连接BE;
    (5)通过作图我们知道.,观察并测量图形中的角,写出一组你发现的两个角之间可能存在的数量关系.
    5、在数轴上,点A,B分别表示数a,b,且,记.
    (1)求AB的值;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)如图,点P,Q分别从点A,B;两点同时出发,都沿数轴向右运动,点P的速度是每秒4个单位长度,点Q的速度是每秒1个单位长度,点C从原点出发沿数轴向右运动,速度是每秒3个单位长度,运动时间为t秒.
    ①请用含t的式子分别写出点P、点Q、点C所表示的数;
    ②当t的值是多少时,点C到点P,Q的距离相等?
    -参考答案-
    一、单选题
    1、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为﹣4,
    ∵水面AB宽为20米,
    ∴A(﹣10,﹣4),B(10,﹣4),
    将A代入y=ax2,
    ﹣4=100a,
    ∴a=﹣,
    ∴y=﹣x2,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为﹣1,
    ∴﹣1=﹣x2,
    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
    2、A
    【分析】
    根据单项式的次数的概念求解.
    【详解】
    解:由题意得:a+b+2=3,
    ∴a+b=1.
    故选:A.
    【点睛】
    本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.
    3、B
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
    作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.
    【详解】
    解:∵△ABC、△ADE都是等边三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE,
    ∴∠ABD=∠ACE,
    ∵AF=CF,
    ∴∠ABD=∠CBD=∠ACE=30°,
    ∴点E在射线CE上运动(∠ACE=30°),
    作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
    ∵CA=CM,∠ACM=60°,
    ∴△ACM是等边三角形,
    ∴△ACM≌△ACB,
    ∴FM=FB=b,
    ∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
    故选:B.
    【点睛】
    此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
    4、D
    【分析】
    两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.
    【详解】
    解:∵3600÷20=180米/分,
    ∴两人同行过程中的速度为180米/分,故A选项不符合题意;
    ∵东东在爸爸返回5分钟后返回即第20分钟返回
    ∴m=20-5=15,
    ∴n=180×15=2700,故B选项不符合题意;
    ∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;
    ∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,
    ∴运动18分钟时两人相距3240-2430=810米;
    ∵返程过程中东东45-20=25分钟走了3600米,
    ∴东东返程速度=3600÷25=144米/分,
    ∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴运动31分钟两人相距756米,故D选项符合题意;
    故选D.
    【点睛】
    本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
    5、D
    【分析】
    根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
    【详解】
    A.该一次函数经过一、二、四象限
    , y随x的增大而减小,
    故A,B不正确;
    C. 如图,设一次函数与轴交于点
    则当时,,故C不正确
    D. 将点坐标代入解析式,得
    关于x的方程的解是
    故D选项正确
    故选D
    【点睛】
    本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
    6、D
    【分析】
    勾股定理求出CE长,再根据垂直平分线的性质得出BE=CE即可.
    【详解】
    解:∵,,,
    ∴,
    ∵,D是BC的中点,垂足为D,
    ∴BE=CE,
    故选:D.
    【点睛】
    本题考查了勾股定理,垂直平分线的性质,解题关键是熟练运用勾股定理求出CE长.
    7、C
    【分析】
    直接利用直线的性质和线段的性质分别判断得出答案.
    【详解】
    解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;
    ②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;
    ③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.
    故选:C.
    【点睛】
    本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.
    8、C
    【分析】
    先移项,把方程化为 再利用直接开平方的方法解方程即可.
    【详解】
    解:,


    故选C
    【点睛】
    本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.
    9、D
    【分析】
    先根据数轴可得,再根据有理数的减法法则、绝对值性质逐项判断即可得.
    【详解】
    解:由数轴的性质得:.
    A、,则此项错误;
    B、,则此项错误;
    C、,则此项错误;
    D、,则此项正确;
    故选:D.
    【点睛】
    本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.
    10、C
    【分析】
    取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.
    【详解】
    解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,
    ∵点A(1,0),B (3,0),
    ∴OA=1,OB=3,
    ∴OE=2,
    ∴ED=2×=,
    ∵∠ACB=90°,
    ∴点C在以AB为直径的圆上,
    ∴线段CD长的最小值为−1.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故选:C.
    【点睛】
    本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.
    二、填空题
    1、13或12-或12+
    【解析】
    【分析】
    根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.
    【详解】
    解:如图,点D的位置如图所示:
    ①若CD=AB,此时点D在D1的位置,CD1=AB=13;
    ②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,
    过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,
    设BE=x,
    ∵,
    ∴AE=x,
    在Rt△ABE中,AE2+BE2=AB2,
    即x2+(x)2=132,
    解得:x1=5,x2=-5(舍去),
    ∴BE=5,AE=12,
    ∴CE=BC-BE=6,
    由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,
    在Rt△AFD2中,FD2=,
    ∴CD2=CF-FD2=12-,
    CD3=CF+FD2=12+,
    综上所述,CD的长度为13、12-或12+.
    故答案为:13、12-或12+.
    【点睛】
    本题主要考查了新定义,锐角三角函数,勾股定理等知识,解题的关键是理解并能运用“等对角四边形”这个概念.在(2)中注意分类讨论思想的应用、勾股定理的应用.
    2、 141 143
    【解析】
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    根据平均数,众数的性质分别计算出结果即可.
    【详解】
    解:根据题目给出的数据,可得:
    平均数为:=143;
    141出现了5次,出现次数最多,则众数是:141;
    故答案为:141;143.
    【点睛】
    本题考查的是平均数,众数,熟悉相关的计算方法是解题的关键.
    3、##65度
    【解析】
    【分析】
    根据折叠的性质可得出,代入的度数即可得出答案.
    【详解】
    解:由折叠可得出,


    故答案为:.
    【点睛】
    本题考查了翻折变换的性质,熟练掌握翻折变换的性质是解题的关键.
    4、##
    【解析】
    【分析】
    移项合并化系数为1即可.
    【详解】

    移项合并同类项,得:.
    化系数为.
    故答案为:.
    【点睛】
    本题考查一次不等式的解法,掌握一般步骤是关键,属于基础题.
    5、<
    【解析】
    【分析】
    找到二次函数对称轴,根据二次函数的增减性即可得出结论.
    【详解】
    解:∵y=﹣2(x﹣1)2+3,
    ∴抛物线y=﹣2(x﹣1)2+3的开口向下,对称轴为x=1,
    ∴在x<1时,y随x的增大而增大,
    ∵x1<x2<0,
    ∴y1<y2.
    故答案为:<.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查二次函数的增减性,掌握其增减规律,找到对称轴是解本题关键.
    三、解答题
    1、
    (1)100名
    (2)①见解析;②
    (3)1440名
    【分析】
    (1)用不及格的人数除以不及格的人数占比即可得到总人数;
    (2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案;
    (3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可.
    (1)
    解:由题意得抽取的学生人数为:(名);
    (2)
    解:①由题意得:良好的人数为:(名),
    ∴优秀的人数为:(名),
    ∴补全统计图如下所示:
    ②由题意得:扇形统计图中表示“及格”的扇形的圆心角度数=;
    (3)
    解:由题意得:估计这次竞赛成绩为“优秀”和“良好”等级的学生共有(名).
    【点睛】
    本题主要考查了条形统计图与扇形统计图信息相关联,画条形统计图,求扇形统计图某一项的圆心角度数,用样本估计总体等等,正确读懂统计图是解题的关键.
    2、(1)证明见解析;(2);(3)或
    【分析】
    (1)根据矩形和勾股定理的性质,得;再根据直角等腰三角形的性质计算,即可完成证明;
    (2)根据矩形和勾股定理的性质,得,再根据勾股定理、直角等腰三角形的性质计算,即可得到答案;
    (3)过点E作于点F,交AD于点Q,通过证明四边形和四边形是矩形,得,根据等腰直角三角形性质,推导得,通过证明,得,根据题意,等腰三角形分三种情况分析,当时,根据(2)的结论,得:,通过求解一元二次方程,得;当时,根据勾股定理列一元二次方程并求解,推导得不成立,当时,结合矩形的性质,计算得,从而完成求解.
    【详解】
    (1)∵四边形ABCD是矩形,AC是对角线
    ∴,

    ∵以AC为直角边作等腰直角三角形EAC,且
    ∴;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)∵四边形ABCD是矩形,
    ∴,
    ∵以PC为直角边作等腰直角三角形EPC,

    ∴;
    (3)过点E作于点F,交AD于点Q,
    ∴,
    ∵四边形ABCD是矩形
    ∴,,
    ∴四边形和四边形是矩形

    ∵等腰直角三角形EPC,
    ∴,


    在和中

    ∴,
    ∴,
    ∴,,
    ∴,
    ①当时,得:,
    ∴,
    解得,
    ∵,故舍去;
    ②当时,得:



    ∴无实数解;
    ③当时


    ∵,,
    ∴四边形为矩形
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ∵,


    ∴综上所述,或时,是等腰三角形.
    【点睛】
    本题考查了直角三角形、等腰三角形、勾股定理、矩形、一元二次方程、全等三角形的知识;解题的关键是熟练掌握等腰三角形、勾股定理、一元二次方程的性质,从而完成求解.
    3、50°,25°.
    【分析】
    根据邻补角的性质,可得∠AOD+∠BOD=180°,即,代入可得∠BOD,根据对顶角的性质,可得∠∠AOC的度数,根据角平分线的性质,可得∠DOE的数.
    【详解】
    解:由邻补角的性质,得∠AOD+∠BOD=180°,即
    ∵,
    ∴.
    ∴,
    ∴∠AOC=∠BOD=50°,
    ∵OE平分∠BOD,得
    ∠DOE=∠DOB=25°.
    【点睛】
    本题考查了角平分线的定义,对顶角、邻补角的性质,解题关键是熟记相关性质,根据角之间的关系建立方程求解.
    4、(1)画图见解析,基本事实:两点确定一条直线;(2)画图见解析;(3)画图见解析;(4)画图见解析;(5)
    【分析】
    (1)直接过AB两点画直线即可;
    (2)用量角器直接画图即可;
    (3)以B为圆心,BA长度为半径画圆即可;
    (4)用带刻度的直尺量出AD长度取中点即可;
    (5)用量角器测量各个角度大小即可;
    【详解】
    (1)画图如下,基本事实:两点确定一条直线
    (2)画图如下;
    (3)画图如下;
    (4)画图如下;
    (5)不唯一,正确即可.
    例如:,,等

    【点睛】
    本题考查线段和角度作图,熟练使用量角器、圆规和带刻度的直尺是解题的关键.
    5、
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)
    (2)①点所表示的数为,点所表示的数为,点所表示的数为;②或
    【分析】
    (1)先根据绝对值的非负性求出的值,再代入计算即可得;
    (2)①根据“路程=速度时间”、结合数轴的性质即可得;
    ②根据建立方程,解方程即可得.
    (1)
    解:,

    解得,

    (2)
    解:①由题意,点所表示的数为,
    点所表示的数为,
    点所表示的数为;
    ②,,
    由得:,
    即或,
    解得或,
    故当或时,点到点的距离相等.
    【点睛】
    本题考查了数轴、绝对值、一元一次方程的应用等知识点,熟练掌握数轴的性质是解题关键.
    一分钟跳绳个数(个)
    141
    144
    145
    146
    学生人数(名)
    5
    2
    1
    2

    相关试卷

    真题解析湖南省湘潭市中考数学模拟真题 (B)卷(含答案及解析):

    这是一份真题解析湖南省湘潭市中考数学模拟真题 (B)卷(含答案及解析),共29页。试卷主要包含了如图,有三块菜地△ACD,如图,某汽车离开某城市的距离y,如图,A等内容,欢迎下载使用。

    真题解析湖南省湘潭市中考数学历年真题练习 (B)卷(含答案及解析):

    这是一份真题解析湖南省湘潭市中考数学历年真题练习 (B)卷(含答案及解析),共31页。试卷主要包含了利用如图①所示的长为a,如图,某汽车离开某城市的距离y,抛物线的顶点为等内容,欢迎下载使用。

    【历年真题】湖南省邵阳县中考数学模拟真题练习 卷(Ⅱ)(含答案及解析):

    这是一份【历年真题】湖南省邵阳县中考数学模拟真题练习 卷(Ⅱ)(含答案及解析),共31页。试卷主要包含了如图个三角形.,下列各式中,不是代数式的是,如图,E等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map