年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    【高频真题解析】贵州省安顺市中考数学模拟定向训练 B卷(含答案及详解)

    【高频真题解析】贵州省安顺市中考数学模拟定向训练 B卷(含答案及详解)第1页
    【高频真题解析】贵州省安顺市中考数学模拟定向训练 B卷(含答案及详解)第2页
    【高频真题解析】贵州省安顺市中考数学模拟定向训练 B卷(含答案及详解)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【高频真题解析】贵州省安顺市中考数学模拟定向训练 B卷(含答案及详解)

    展开

    这是一份【高频真题解析】贵州省安顺市中考数学模拟定向训练 B卷(含答案及详解),共30页。试卷主要包含了如图个三角形.,单项式的次数是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,直线AB与CD相交于点O,若,则等于( )
    A.40°B.60°C.70°D.80°
    2、用符号表示关于自然数x的代数式,我们规定:当x为偶数时,;当x为奇数时,.例如:,.设,,,…,.以此规律,得到一列数,,,…,,则这2022个数之和等于( )
    A.3631B.4719C.4723D.4725
    3、下列几何体中,截面不可能是长方形的是( )
    A.长方体B.圆柱体
    C.球体D.三棱柱
    4、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
    A.B.C.D.
    5、如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2),再分别连接图(2)中间的小三角形三边中点得到图(3),按这种方法继续下去,第6个图形有( )个三角形.
    A.20B.21C.22D.23
    6、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.abB.a+bC.abD.a
    7、已知反比例函数经过平移后可以得到函数,关于新函数,下列结论正确的是( )
    A.当时,y随x的增大而增大B.该函数的图象与y轴有交点
    C.该函数图象与x轴的交点为(1,0)D.当时,y的取值范围是
    8、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
    A.B.y随x的增大而增大
    C.当时,D.关于x的方程的解是
    9、单项式的次数是( )
    A.1B.2C.3D.4
    10、为了完成下列任务,你认为最适合采用普查的是( )
    A.了解某品牌电视的使用寿命B.了解一批西瓜是否甜
    C.了解某批次烟花爆竹的燃放效果D.了解某隔离小区居民新冠核酸检查结果
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为______.
    2、如图,在矩形ABCD中,cm,cm.动点P、Q分别从点A、C以1cm/s的速度同时出发.动点P沿AB向终点B运动,动点Q沿CD向终点D运动,连结PQ交对角线AC于点O.设点P的运动时间为.
    (1)当四边形APQD是矩形时,t的值为______.
    (2)当四边形APCQ是菱形时,t的值为______.
    (3)当是等腰三角形时,t的值为______.
    3、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点,则点A的坐标是__________.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    4、观察下列图形,它们是按一定规律排列的,按此规律,第2022个图形中“○”的个数为______.
    5、、所表示的有理数如图所示,则________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在平面直角坐标系中,抛物线与轴交于两点与轴交于点C,点M是抛物线的顶点,抛物线的对称轴与BC交于点D,与轴交于点E.
    (1)求抛物线的对称轴及B点的坐标
    (2)如果,求抛物线的表达式;
    (3)在(2)的条件下,已知点F是该抛物线对称轴上一点,且在线段的下方,,求点的坐标
    2、定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做“和谐三角形”.如图1,在ABC中,若AB2AC2ABACBC2,则ABC是“和谐三角形”.
    (1)等边三角形一定是“和谐三角形”,是______命题(填“真”或“假”).
    (2)若RtABC中,C90,ABc,ACb,BCa,且ba,若ABC 是“和谐三角形”,求a:b:c.
    3、已知二元一次方程,通过列举将方程的解写成下列表格的形式,
    如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)①表格中的______,______;
    ②根据以上确定対应点坐标的方法,在所给的直角坐标系中画出表格中给出的三个解的对应点;
    (2)若点,恰好都落在的解对应的点组成的图象上,求a,b的值.
    4、计算:.
    5、第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:
    (1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;
    (2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;
    (3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?
    -参考答案-
    一、单选题
    1、A
    【分析】
    根据对顶角的性质,可得∠1的度数.
    【详解】
    解:由对顶角相等,得
    ∠1=∠2,又∠1+∠2=80°,
    ∴∠1=40°.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故选:A.
    【点睛】
    本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.
    2、D
    【分析】
    根据题意分别求出x2=4,x3=2,x4=1,x5=4,…,由此可得从x2开始,每三个数循环一次,进而继续求解即可.
    【详解】
    解:∵x1=8,
    ∴x2=f(8)=4,
    x3=f(4)=2,
    x4=f(2)=1,
    x5=f(1)=4,
    …,
    从x2开始,每三个数循环一次,
    ∴(2022-1)÷3=6732,
    ∵x2+x3+x4=7,
    ∴=8+673×7+4+2=4725.
    故选:D.
    【点睛】
    本题考查数字的变化规律,能够通过所给的数,通过计算找到数的循环规律是解题的关键.
    3、C
    【分析】
    根据长方体、圆柱体、球体、三棱柱的特征,找到用一个平面截一个几何体得到的形状不是长方形的几何体解答即可.
    【详解】
    解:长方体、圆柱体、三棱柱的截面都可能出现长方形,只有球体的截面只与圆有关,
    故选:C.
    【点睛】
    此题考查了截立体图形,正确掌握各几何体的特征是解题的关键.
    4、B
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,
    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    5、B
    【分析】
    由第一个图中1个三角形,第二个图中5个三角形,第三个图中9个三角形,每次递增4个,即可得出第n个图形中有(4n-3)个三角形.
    【详解】
    解:由图知,第一个图中1个三角形,即(4×1-3)个;
    第二个图中5个三角形,即(4×2-3)个;
    第三个图中9个三角形,即(4×3-3)个;

    ∴第n个图形中有(4n-3)个三角形.
    ∴第6个图形中有个三角形
    故选B
    【点睛】
    本题考查了图形变化的一般规律问题.能够通过观察,掌握其内在规律是解题的关键.
    6、B
    【分析】
    先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
    作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.
    【详解】
    解:∵△ABC、△ADE都是等边三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE,
    ∴∠ABD=∠ACE,
    ∵AF=CF,
    ∴∠ABD=∠CBD=∠ACE=30°,
    ∴点E在射线CE上运动(∠ACE=30°),
    作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
    ∵CA=CM,∠ACM=60°,
    ∴△ACM是等边三角形,
    ∴△ACM≌△ACB,
    ∴FM=FB=b,
    ∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
    故选:B.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
    7、C
    【分析】
    函数的图象是由函数的图象向下平移1个单位长度后得到的,根据两个函数的图像,可排除A,B,C选项,将y=0代入函数可得到函数与x轴交点坐标为(1,0),故C选项正确.
    【详解】
    解:函数与函数的图象如下图所示:
    函数的图象是由函数的图象向下平移1个单位长度后得到的,
    A、由图象可知函数,当时,y随x的增大而减小,选项说法错误,与题意不符;
    B、函数的图象是由函数的图象向下平移一个单位后得到的,所以函数与y轴无交点,选项说法错误,与题意不符;
    C、将y=0代入函数中得,,解得,故函数与x轴交点坐标为(1,0),选项说法正确,与题意相符;
    D、当时, ,有图像可知当时,y的取值范围是,故选项说法错误,与题意不符;
    故选:C.
    【点睛】
    本题考查反比例函数的图象,以及函数图象的平移,函数与数轴的交点求法,能够画出图象,并掌握数形结合的方法是解决本题的关键.
    8、D
    【分析】
    根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
    【详解】
    A.该一次函数经过一、二、四象限
    , y随x的增大而减小,
    故A,B不正确;
    C. 如图,设一次函数与轴交于点
    则当时,,故C不正确
    D. 将点坐标代入解析式,得
    关于x的方程的解是
    故D选项正确
    故选D
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
    9、C
    【分析】
    单项式中所有字母的指数和是单项式的次数,根据概念直接作答即可.
    【详解】
    解:单项式的次数是3,
    故选C
    【点睛】
    本题考查的是单项式的次数的含义,掌握“单项式中所有字母的指数和是单项式的次数”是解本题的关键.
    10、D
    【分析】
    普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
    【详解】
    解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
    B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
    C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;
    D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.
    故选:D.
    【点睛】
    本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    二、填空题
    1、(-,1)
    【解析】
    【分析】
    首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.
    【详解】
    解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,
    则∠ODC=∠AEO=90°,
    ∴∠OCD+∠COD=90°,
    ∵四边形OABC是正方形,
    ∴OC=OA,∠AOC=90°,
    ∴∠COD+∠AOE=90°,
    ∴∠OCD=∠AOE,
    在△AOE和△OCD中,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ∴△AOE≌△OCD(AAS),
    ∴CD=OE=1,OD=AE=,
    ∴点C的坐标为:(-,1).
    故答案为:(-,1).
    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解此题的关键.
    2、 4 或5或4
    【解析】
    【分析】
    (1)根据矩形的性质得到CD=cm,,求出DQ=(8-t)cm,由四边形APQD是矩形时,得到t=8-t,求出t值;
    (2)连接PC,求出AP=PC=tcm,PB=(8-t)cm,由勾股定理得,即,求解即可;
    (3)由勾股定理求出AC=10cm,证明△OAP≌△OCQ,得到OA=OC=5cm,分三种情况:当AP=OP时,过点P作PN⊥AO于N,证明△NAP∽△BAC,得到,求出t=;当AP=AO=5cm时,t=5;当OP=AO=5cm时,过点O作OG⊥AB于G,证明△OAG∽△CAB,得到,代入数值求出t.
    【详解】
    解:(1)由题意得AP=CQ=t,
    ∵在矩形ABCD中,cm,cm.
    ∴CD=cm,,
    ∴DQ=(8-t)cm,
    当四边形APQD是矩形时,AP=DQ,
    ∴t=8-t,
    解得t=4,
    故答案为:4;
    (2)连接PC,
    ∵四边形APCQ是菱形,
    ∴AP=PC=tcm,PB=(8-t)cm,
    ∵在矩形ABCD中,∠B=90°,
    ∴,
    ∴,
    解得,
    故答案为:;
    (3)∵∠B=90°,cm,cm.
    ∴AC=10cm,
    ∵,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴∠OAP=∠OCQ,∠OPA=∠OQC,
    ∴△OAP≌△OCQ,
    ∴OA=OC=5cm,
    分三种情况:
    当AP=OP时,过点P作PN⊥AO于N,则AN=ON=2.5cm,
    ∵∠NAP=∠BAC,∠ANP=∠B,
    ∴△NAP∽△BAC,
    ∴,
    ∴,
    解得t=;
    当AP=AO=5cm时,t=5;
    当OP=AO=5cm时,过点O作OG⊥AB于G,则,
    ∵∠OAG=∠BAC,∠OGA=∠B,
    ∴△OAG∽△CAB,
    ∴,
    ∴,
    解得t=4,
    故答案为:或5或4.
    【点睛】
    此题考查了矩形的性质,菱形的性质,等腰三角形的性质,勾股定理,相似三角形的判定及性质,熟记各知识点并应用解决问题是解题的关键.
    3、(-3,9)
    【解析】
    【分析】
    设长方形纸片的长为x,宽为y,根据点B的坐标,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再结合点A的位置,即可得出点A的坐标.
    【详解】
    解:设长方形纸片的长为x,宽为y,
    依题意,得:,
    解得:,
    ∴x-y=3,x+2y=9,
    ∴点A的坐标为(-3,6).
    故答案为:(-3,9).
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查了二元一次方程组的应用以及坐标与图形性质,找准等量关系,正确列出二元一次方程组是解题的关键.
    4、6067
    【解析】
    【分析】
    设第n个图形共有an个○(n为正整数),观察图形,根据各图形中○个数的变化可找出变化规律“an=3n+1(n为正整数)”,依此规律即可得出结论.
    【详解】
    解:设第n个图形共有an个○(n为正整数).
    观察图形,可知:a1=4=3+1=3×1+1,a2=7=6+1=3×2+1,a3=10=9+1=3×3+1,a4=13=12+1=3×4+1,…,
    ∴an=3n+1(n为正整数),
    ∴a2022=3×2022+1=6067.
    故答案为6067.
    【点睛】
    本题考查了规律型:图形的变化类,根据各图形中○个数的变化找出变化规律“an=3n+1(n为正整数)”是解题的关键.
    5、
    【解析】
    【分析】
    根据数轴确定,得出,然后化去绝对值符号,去括号合并同类项即可.
    【详解】
    解:根据数轴得,
    ∴,
    ∴.
    故答案为:.
    【点睛】
    本题考查数轴上点表示数,化简绝对值,整式加减运算,掌握数轴上点表示数,化简绝对值,整式加减运算,关键是利用数轴得出.
    三、解答题
    1、
    (1)对称轴是,B(4,0)
    (2)y=
    (3)F( ,-5)
    【分析】
    (1)根据二次函数抛物线的性质,可求出对称轴,即可得B点的坐标;
    (2)二次函数的y轴平行于对称轴,根据平行线分线段成比例用含a的代数式表示DE的长,MD= ,可表示M的纵坐标,然后把M的横坐标代入y=ax2−3ax−4a,可得到关于a的方程,求出a的值,即可得答案;
    (3)先证△AOC∽△COB,得∠BCO=∠CAO,再求出∠CAO=∠CFB,得△AGC∽△FGB,根据相似三角形对于高的比等于相似比,可得答案.
    (1)
    解:∵二次函数y=ax2−3ax−4a,
    ∴对称轴是 ,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵A(−1,0),
    ∵1+1.5=2.5,
    ∴1.5+2.5=4,
    ∴B(4,0);
    (2)
    ∵二次函数y=ax2−3ax−4a,C在y轴上,
    ∴C的横坐标是0,纵坐标是−4a,
    ∵y轴平行于对称轴,
    ∴ ,
    ∴,
    ∵ ,
    ∵MD=,
    ∵M的纵坐标是+
    ∵M的横坐标是对称轴x,
    ∴ ,
    ∴+=,
    解这个方程组得: ,
    ∴y=ax2−3ax−4a= x2-3×()x-4×()=;
    (3)
    假设F点在如图所示的位置上,连接AC、CF、BF,CF与AB相交于点G,
    由(2)可知:AO=1,CO=2,BO=4,
    ∴ ,
    ∴,
    ∵∠AOC=∠COB=90°,
    ∴△AOC∽△COB,
    ∴∠BCO=∠CAO,
    ∵∠CFB=∠BCO,
    ∴∠CAO=∠CFB,
    ∵∠AGC=∠FGB,
    ∴△AGC∽△FGB,
    ∴ ,
    设EF=x,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵BF2=BE2+EF2= ,AC2=22+12=5,CO2=22=4,
    ∴= ,
    解这个方程组得:x1=5,x2=-5,
    ∵点F在线段BC的下方,
    ∴x1=5(舍去),
    ∴F(,-5).
    【点睛】
    本题考查了二次函数的性质、平行线分线段成比例、一元一次方程的解法、一元二次方程方程的解法、相似三角形的判定与性质,做题的关键是相似三角形的判定与性质的灵活运用.
    2、
    (1)真;
    (2)1::2
    【分析】
    (1)根据等边三角形的性质“三边都相等”,结合“和谐三角形”的定义即可判断;
    (2)由勾股定理可知,根据是“和谐三角形”,可分类讨论:①当时;②当时;③当时,再结合,计算出符合题意的比即可.
    (1)
    根据等边三角形的性质可知:,
    ∴.
    故等边是“和谐三角形”.
    所以等边三角形一定是“和谐三角形”,是真命题.
    故答案为:真.
    (2)
    ∵是直角三角形,且,
    ∴,
    由是“和谐三角形”,可分类讨论,
    ①当时.
    故有,整理得:,
    ∴,整理得:.
    ∴.
    此时,不符合题意(舍).
    ②当时.
    故有,整理得:,
    故此情况不存在(舍).
    ③当时.
    故有,整理得:,
    ∴,整理得:.
    ∴.
    【点睛】
    本题考查判断命题的真假,等边三角形的性质和勾股定理.读懂题意,理解“和谐三角形”的定义是解答本题的关键.
    3、
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)①4,5;②图见解析
    (2)
    【分析】
    (1)①将代入方程可得的值,将代入方程可得的值;
    ②先确定三个解的对应点的坐标,再在所给的平面直角坐标系中画出即可得;
    (2)将点,代入方程可得一个关于二元一次方程组,解方程组即可得.
    (1)
    解:①将代入方程得:,
    解得,即,
    将代入方程得:,
    解得,即,
    故答案为:4,5;
    ②由题意,三个解的对应点的坐标分别为,,,
    在所给的平面直角坐标系中画出如图所示:
    (2)
    解:由题意,将代入得:,
    整理得:,
    解得.
    【点睛】
    本题考查了二元一次方程(组)、平面直角坐标系等知识点,熟练掌握二元一次方程组的解法是解题关键.
    4、
    【分析】
    先根据二次根式的性质计算,然后合并即可.
    【详解】
    解:

    【点睛】
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    5、
    (1)12%.补图见解析
    (2)270
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (3)12.5%
    【分析】
    (1)用冰壶的人所占百分比减去4个百分点即可求出百分比,按照百分比补全统计图即可;
    (2)用120人除以体验过冰壶运动的百分比求出总人数,再乘以滑雪的百分比即可;
    (3)求出体验过滑雪的人比体验过滑冰的人多多少人,再求出百分比即可.
    (1)
    解:都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的百分比为:16%-4%=12%,不全统计图如图:
    故答案为:12%.
    (2)
    解:调查的总人数为:120÷24%=500(人),
    参加过滑雪的人数为:500×54%=270(人),
    故答案为:270
    (3)
    解:体验过滑冰的人数为:500×48%=240(人),
    (270-240)÷240=12.5%,
    体验过滑雪的人比体验过滑冰的人多12.5%.
    【点睛】
    本题考查了条形统计图,解题关键是准确从条形统计图中获取信息,正确进行计算求解.
    x
    -3
    -1
    n
    y
    6
    m
    -2

    相关试卷

    【历年真题】贵州省铜仁市中考数学模拟定向训练 B卷(含答案及解析):

    这是一份【历年真题】贵州省铜仁市中考数学模拟定向训练 B卷(含答案及解析),共31页。试卷主要包含了生活中常见的探照灯等内容,欢迎下载使用。

    【高频真题解析】2022年中考数学模拟定向训练 B卷(含答案详解):

    这是一份【高频真题解析】2022年中考数学模拟定向训练 B卷(含答案详解),共32页。试卷主要包含了方程的解为,如果,且,那么的值一定是 .,若,则下列不等式正确的是等内容,欢迎下载使用。

    【高频真题解析】中考数学模拟定向训练 B卷(精选):

    这是一份【高频真题解析】中考数学模拟定向训练 B卷(精选),共22页。试卷主要包含了若分式有意义,则的取值范围是,计算3.14-的结果为 .等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map