![【高频真题解析】湖南省邵阳市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解)第1页](http://img-preview.51jiaoxi.com/2/3/15475681/0-1710150472112/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【高频真题解析】湖南省邵阳市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解)第2页](http://img-preview.51jiaoxi.com/2/3/15475681/0-1710150472144/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【高频真题解析】湖南省邵阳市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解)第3页](http://img-preview.51jiaoxi.com/2/3/15475681/0-1710150472201/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【高频真题解析】湖南省邵阳市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解)
展开
这是一份【高频真题解析】湖南省邵阳市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解),共28页。试卷主要包含了生活中常见的探照灯,利用如图①所示的长为a,下列图形是全等图形的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
A.7B.6C.5D.4
2、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A.B.C.D.
3、下列语句中,不正确的是( )
A.0是单项式B.多项式的次数是4
C.的系数是D.的系数和次数都是1
4、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )
A.2个B.3个C.4个D.5个
5、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.米B.10米C.米D.12米
6、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
7、已知反比例函数经过平移后可以得到函数,关于新函数,下列结论正确的是( )
A.当时,y随x的增大而增大B.该函数的图象与y轴有交点
C.该函数图象与x轴的交点为(1,0)D.当时,y的取值范围是
8、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )
A.B.
C.D.
9、下列图形是全等图形的是( )
A.B.C.D.
10、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )
A.两人前行过程中的速度为180米/分B.的值是15,的值是2700
C.爸爸返回时的速度为90米/分D.运动18分钟或31分钟时,两人相距810米
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图1可得等式:.
(1)由图2可得等式:________;
(2)利用(1)中所得到的结论,解决下面的问题:已知且,则_______.
2、如图,在中,中线相交于点,如果的面积是4,那么四边形的面积是_________
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、在日常生活和生产中有很多现象可以用数学知识进行解释.如图,要把一根挂衣帽的挂钩架水平固定在墙上,至少需要钉______个钉子.用你所学数学知识说明其中的道理______.
4、如图,直角三角形AOB的直角边OA在数轴上,AB与数轴垂直,点O与数轴原点重合,点A表示的实数是2,BA=2,以点O为圆心,OB的长为半径画弧,与数轴交于点C,则点C对应的数是_____.
5、当a=﹣1时,代数式2a2﹣a+1的值是 ___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,,,且,,求A点的坐标.
2、如图,已知中,,射线CD交AB于点D,点E是CD上一点,且,联结BE.
(1)求证:
(2)如果CD平分,求证:.
3、(1)探究:如图1,ABCDEF,试说明.
(2)应用:如图2,ABCD,点在、之间,与交于点,与交于点.若,,则的大小是多少?
(3)拓展:如图3,直线在直线、之间,且ABCDEF,点、分别在直线、上,点是直线上的一个动点,且不在直线上,连接、.若,则 度(请直接写出答案).
4、在数轴上,点A,B分别表示数a,b,且,记.
(1)求AB的值;
(2)如图,点P,Q分别从点A,B;两点同时出发,都沿数轴向右运动,点P的速度是每秒4个单位长度,点Q的速度是每秒1个单位长度,点C从原点出发沿数轴向右运动,速度是每秒3个单位长度,运动时间为t秒.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
①请用含t的式子分别写出点P、点Q、点C所表示的数;
②当t的值是多少时,点C到点P,Q的距离相等?
5、请根据学习“一次函数”时积累的经验和方研究函数的图象和性质,并解决问题.
(1)填空:
①当x=0时, ;
②当x>0时, ;
③当x<0时, ;
(2)在平面直角坐标系中作出函数的图象;
(3)观察函数图象,写出关于这个函数的两条结论;
(4)进一步探究函数图象发现:
①函数图象与轴有 个交点,方程有 个解;
②方程有 个解;
③若关于的方程无解,则的取值范围是 .
-参考答案-
一、单选题
1、A
【分析】
由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.
【详解】
由折叠的性质得,,
∴,,
∴,
∵,
∴,
∴,
在与中,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
∴,,
设,则,
∴,
解得:,
∴,,
∴.
故选:A.
【点睛】
本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
2、D
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
3、D
【分析】
分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.
【详解】
解:A、0是单项式,正确,不符合题意;
B、多项式的次数是4,正确,不符合题意;
C、的系数是,正确,不符合题意;
D、的系数是-1,次数是1,错误,符合题意,
故选:D.
【点睛】
本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.
4、C
【分析】
根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.
【详解】
∵抛物线开口向上,
∴a>0,
∵抛物线与y轴的交点在y轴的负半轴上,
∴c<0,
∵抛物线的对称轴在y轴的右边,
∴b<0,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故①正确;
∵二次函数的图像与x轴交于点,
∴a-b+c=0,
根据对称轴的左侧,y随x的增大而减小,
当x=-2时,y>0即,
故②正确;
∵,
∴b= -2a,
∴3a+c=0,
∴2a+c=2a-3a= -a<0,
故③正确;
根据题意,得,
∴,
解得,
故④错误;
∵=0,
∴,
∴y=向上平移1个单位,得y=+1,
∴为方程的两个根,且且.
故⑤正确;
故选C.
【点睛】
本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
5、B
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为-4,
∵水面AB宽为20米,
∴A(-10,-4),B(10,-4),
将A代入y=ax2,
-4=100a,
∴,
∴,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为-1,
∴
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
6、C
【分析】
根据平行线的性质可得,进而根据即可求解
【详解】
解:
故选C
【点睛】
本题考查了平行线的性质,掌握平行线的性质是解题的关键.
7、C
【分析】
函数的图象是由函数的图象向下平移1个单位长度后得到的,根据两个函数的图像,可排除A,B,C选项,将y=0代入函数可得到函数与x轴交点坐标为(1,0),故C选项正确.
【详解】
解:函数与函数的图象如下图所示:
函数的图象是由函数的图象向下平移1个单位长度后得到的,
A、由图象可知函数,当时,y随x的增大而减小,选项说法错误,与题意不符;
B、函数的图象是由函数的图象向下平移一个单位后得到的,所以函数与y轴无交点,· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
选项说法错误,与题意不符;
C、将y=0代入函数中得,,解得,故函数与x轴交点坐标为(1,0),选项说法正确,与题意相符;
D、当时, ,有图像可知当时,y的取值范围是,故选项说法错误,与题意不符;
故选:C.
【点睛】
本题考查反比例函数的图象,以及函数图象的平移,函数与数轴的交点求法,能够画出图象,并掌握数形结合的方法是解决本题的关键.
8、A
【分析】
整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.
【详解】
∵大正方形边长为:,面积为:;
1个小正方形的面积加上4个矩形的面积和为:;
∴.
故选:A.
【点睛】
此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.
9、D
【详解】
解:A、不是全等图形,故本选项不符合题意;
B、不是全等图形,故本选项不符合题意;
C、不是全等图形,故本选项不符合题意;
D、全等图形,故本选项符合题意;
故选:D
【点睛】
本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.
10、D
【分析】
两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.
【详解】
解:∵3600÷20=180米/分,
∴两人同行过程中的速度为180米/分,故A选项不符合题意;
∵东东在爸爸返回5分钟后返回即第20分钟返回
∴m=20-5=15,
∴n=180×15=2700,故B选项不符合题意;
∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;
∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,
∴运动18分钟时两人相距3240-2430=810米;
∵返程过程中东东45-20=25分钟走了3600米,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴东东返程速度=3600÷25=144米/分,
∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,
∴运动31分钟两人相距756米,故D选项符合题意;
故选D.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
二、填空题
1、 2
【解析】
【分析】
(1)方法一:直接利用正方形的面积公式可求出图形的面积;方法二:利用图形的面积等于9部分的面积之和,根据方法一和方法二的结果相等建立等式即可得;
(2)先将已知等式利用完全平方公式、整式的乘法法则变形为,再利用(1)的结论可得,从而可得,由此即可得出答案.
【详解】
解:(1)方法一:图形的面积为,
方法二:图形的面积为,
则由图2可得等式为,
故答案为:;
(2),
,
,
利用(1)的结论得:,
,
,即,
,
,
故答案为:2.
【点睛】
本题考查了完全平方公式与图形面积、整式乘法的应用,熟练掌握完全平方公式和整式的运算法则是解题关键.
2、8
【解析】
【分析】
如图所示,连接DE,先推出DE是△ABC的中位线,得到,DE∥AB,即可证明△ABO∽△DEO,△CDE∽△CBA,得到,从而推出,即可得到,再由,即可得到,由,得到,则.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:如图所示,连接DE,
∵AD,BE分别是BC,AC边上的中线,
∴D、E分别是BC、AC的中点,
∴DE是△ABC的中位线,
∴,DE∥AB,
∴△ABO∽△DEO,△CDE∽△CBA,
∴,
∴,
∴,
∴,
∴
∵,
∴,
∵,
∴,
∴,
故答案为:8.
【点睛】
本题主要考查了相似三角形的性质与判定,三角形中位线定理,熟知相似三角形的性质与判定条件是解题的关键.
3、 2 两点确定一条直线
【解析】
【分析】
根据两点确定一条直线解答.
【详解】
解:至少需要钉2个钉子,所学的数学知识为:两点确定一条直线,
故答案为:2,两点确定一条直线.
【点睛】
此题考查了线段的性质:两点确定一条直线,熟记性质是解题的关键.
4、
【解析】
【分析】
先利用勾股定理求出,再根据作图过程可得,然后根据实数与数轴的关系即可得.
【详解】
解:由题意得:,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
由作图过程可知,,
由数轴的性质可知,点对应的数大于0,
则在数轴上,点对应的数是,
故答案为:.
【点睛】
本题考查了勾股定理、实数与数轴,掌握理解勾股定理是解题关键.
5、4
【解析】
【分析】
把a=-1直接代入2a2-a+1计算即可.
【详解】
解:把a=-1代入2a2-a+1得
2a2-a+1
=2×(-1)2-(-1)+1
=2+1+1
=4;
故答案为:4.
【点睛】
本题考查了代数式的求值,掌握用数值代替代数式里的字母进行计算,正确计算结果是解题关键.
三、解答题
1、A点的坐标为(,)
【分析】
根据题意作AM⊥x轴于M,BN⊥AM于N.只要证明△ABN≌△CAM(AAS),即可推出AM=BN,AN=CM,设OM=a,则CM=5-a,BN=AM=3+a,根据MN=AM-AN,列出方程即可解决问题.
【详解】
解:作AM⊥x轴于M,BN⊥AM于N,
∵∠BAC=90°,
∴∠MAB+∠CAN=90°,
∵∠MAB+∠ABN=90°,
∴∠ABN=∠CAM,
在△ABN和△CAM中,
,
∴△ABN≌△CAM(AAS),
∴AM=BN,AN=CM,
∵,,
设OM=a,则CM=5-a,BN=AM=3+a,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴MN=AM-AN,
5=3+a-(5-a),
∴a=,
∴OM=,AM=,
∴A点的坐标为(,).
【点睛】
本题考查全等三角形的判定和性质以及平面直角坐标系点的特征,正确作出辅助线构建全等三角形是解题的关键.
2、
(1)见解析;
(2)见解析
【分析】
(1)先根据相似三角形的判定证明△ADE∽△CDB,则可证得即,再根据相似三角形的判定即可证得结论;
(2)根据角平分线定义和相似三角形的性质证明∠DCB=∠EAB=∠EBA=45°,则△AEB为等腰直角三角形,根据勾股定理可得AB2=2BE2,再根据相似三角形的判定证明△EBD∽△ECB即可证得结论.
(1)
证明:∵,∠ADE=∠CDB,
∴△ADE∽△CDB,
∴即,又∠ADC=∠EDB,
∴;
(2)
证明:∵CD平分,∠ACB=90°,
∴∠ACD=∠DCB=45°,
∵△ADE∽△CDB,,
∴∠DCB=∠EAD=∠EBD=45°,
∴AE=BE,∠AEB=90°,
∴△AEB为等腰直角三角形,
∴AB2=AE2+BE2=2BE2,
∵∠DCB =∠EBD,∠CEB =∠BED,
∴△CEB∽△BED,
∴即,
∴AB2=2BE2=2ED·EC.
【点睛】
本题主要考查相似三角形的判定与性质、角平分线的定义、三角形内角和定理、等腰直角三角形的判定、勾股定理,熟练掌握相似三角形的判定与性质是解答的关键.
3、(1)见解析;(2)60°;(3)70或290
【分析】
(1)由可得,,,则;
(2)利用(1)中的结论可知,,则可得的度数为,由对顶角相等可得;
(3)结合(1)中的结论可得,注意需要讨论是钝角或是锐角时两种情况.
【详解】
解:(1)如图1,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,,
,
.
(2)由(1)中探究可知,,
,且,
,
;
(3)如图,当为钝角时,
由(1)中结论可知,,
;
当为锐角时,如图,
由(1)中结论可知,,
即,
综上,或.
故答案为:70或290.
【点睛】
本题主要考查平行线的性质与判定,难度适中,观察图形,推出角之间的和差关系是解题关键.
4、
(1)
(2)①点所表示的数为,点所表示的数为,点所表示的数为;②或
【分析】
(1)先根据绝对值的非负性求出的值,再代入计算即可得;
(2)①根据“路程=速度时间”、结合数轴的性质即可得;
②根据建立方程,解方程即可得.
(1)
解:,
,
解得,
;
(2)
解:①由题意,点所表示的数为,
点所表示的数为,
点所表示的数为;
②,,
由得:,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
即或,
解得或,
故当或时,点到点的距离相等.
【点睛】
本题考查了数轴、绝对值、一元一次方程的应用等知识点,熟练掌握数轴的性质是解题关键.
5、(1)2;-x+2,x+2;(2)见解析;(3)函数图象关于y轴对称;当x=0时,y有最大值2;(4)①2 2;②1;③.
【分析】
(1)利用绝对值的意义,分别代入计算,即可得到答案;
(2)结合(1)的结论,画出分段函数的图像即可;
(3)结合函数图像,归纳出函数的性质即可;
(4)结合函数图像,分别进行计算,即可得到答案;
【详解】
解:(1)①当x=0时,;
②当x>0时,;
③当x<0时,;
故答案为:2;x+2;x+2;
(2)函数y=|x|+2的图象,如图所示:
(3)函数图象关于y轴对称;
当x=0时,y有最大值2.(答案不唯一)
(4)①函数图象与轴有2个交点,方程有2个解;
②方程有1个解;
③若关于的方程无解,则的取值范围是.
故答案为:2;2;1;.
【点睛】
本题考查了一次函数的图像和性质,绝对值的意义,解题的关键是熟练掌握题意,正确的画出图像.
相关试卷
这是一份【难点解析】湖南省中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共24页。试卷主要包含了如图,有三块菜地△ACD,如图,E等内容,欢迎下载使用。
这是一份【高频真题解析】湖南省中考数学备考真题模拟测评 卷(Ⅰ)(含答案解析),共30页。试卷主要包含了如图个三角形.等内容,欢迎下载使用。
这是一份【高频真题解析】湖南省益阳市中考数学真题模拟测评 (A)卷(含答案详解),共32页。试卷主要包含了如图,等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)