![【高频真题解析】湖南省武冈市中考数学模拟考试 A卷(含详解)01](http://img-preview.51jiaoxi.com/2/3/15475685/0-1710150477964/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【高频真题解析】湖南省武冈市中考数学模拟考试 A卷(含详解)02](http://img-preview.51jiaoxi.com/2/3/15475685/0-1710150478004/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【高频真题解析】湖南省武冈市中考数学模拟考试 A卷(含详解)03](http://img-preview.51jiaoxi.com/2/3/15475685/0-1710150478032/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【高频真题解析】湖南省武冈市中考数学模拟考试 A卷(含详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列宣传图案中,既中心对称图形又是轴对称图形的是( )
A.B.
C.D.
2、已知直线与双曲线相交于,两点,若点的坐标为,则点的坐标为( )
A.B.C.D.
3、下列不等式中,是一元一次不等式的是( )
A.B.C.D.
4、如图,在中,,,,则的度数为( )
A.87°B.88°C.89°D.90°
5、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
A.B.C.D.
6、如图,下列条件中不能判定的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
7、有理数在数轴上对应点的位置如图所示,下列结论中正确是( )
A.B.C.D.
8、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
A.7B.6C.5D.4
9、已知,则的补角等于( )
A.B.C.D.
10、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:
则这组数据的众数是______;平均数是______.
2、如图,小明用一张等腰直角三角形纸片做折纸实验,其中∠C=90°,AC=BC=10,AB=10,点C关于折痕AD的对应点E恰好落在AB边上,小明在折痕AD上任取一点P,则△PEB周长的最小值是___________.
3、如图,在中,BC的垂直平分线MN交AB于点D,若,,P是直线MN上的任意一点,则的最小值是______.
4、若过某多边形一个顶点的所有对角线将这个多边形分成3个三角形,则这个多边形是________边形.
5、如图,正方形 边长为 ,则 _____________
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
三、解答题(5小题,每小题10分,共计50分)
1、某商品每天可售出300件,每件获利2元.为了尽快减少库存,店主决定降价销售.根据经验可知,如果每件降价0.1元,平均每天可多售出20件,店主要想平均每天获利500元,每件商品应降价多少元?
2、已知二元一次方程,通过列举将方程的解写成下列表格的形式,
如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是.
(1)①表格中的______,______;
②根据以上确定対应点坐标的方法,在所给的直角坐标系中画出表格中给出的三个解的对应点;
(2)若点,恰好都落在的解对应的点组成的图象上,求a,b的值.
3、已知:在平面直角坐标系中,点O为坐标原点,和关于y轴对称,且,
(1)如图1,求的度数;
(2)如图2,点P为线段延长线上一点,交x轴于点D,设,点P的横坐标为d,求d与t之间的数量关系;
(3)如图3,在(2)的条件下,点E为x轴上一点,连接交y轴于点F,且,,在的延长线上取一点Q,使,求点Q的横坐标.
4、如图,在等腰中,,点是边上的中点,过点作,交的延长线于点,过点作,交于点,交于点,交于点.
求证:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1);
(2).
5、如图是一块长方形花园,内部修有两个凉亭及过道,其余部分种植花圃(阴影部分).
(1)用整式表示花圃的面积;
(2)若a=3m,修建花圃的成本是每平方米60元,求修建花圃所需费用.
-参考答案-
一、单选题
1、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;
B.不是轴对称图形,也不是中心对称图形,故本选项不合题意;
C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
D.不是轴对称图形,也不是中心对称图形,故本选项不合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、A
【分析】
首先把点A坐标代入,求出k的值,再联立方程组求解即可
【详解】
解:把A代入,得:
∴k=4
∴
联立方程组
解得,
∴点B坐标为(-2,-2)
故选:A
【点睛】
本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握代入法.
3、B
【分析】
根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A、不等式中含有两个未知数,不符合题意;
B、符合一元一次不等式的定义,故符合题意;
C、没有未知数,不符合题意;
D、未知数的最高次数是2,不是1,故不符合题意.
故选:B
【点睛】
本题考查一元一次不等式的定义,掌握其定义是解决此题关键.
4、A
【分析】
延长DB至E,使BE=AB,连接AE,则DE=CD,从而可求得∠C=∠E=31°,再根据三角形内角和可求度数.
【详解】
解:延长DB至E,使BE=AB,连接AE,
∴∠BAE=∠E,
∵,
∴∠BAE=∠E=31°,
∵AB+BD=CD
∴BE+BD=CD
即DE=CD,
∵AD⊥BC,
∴AD垂直平分CE,
∴AC=AE,
∴∠C=∠E=31°,
∴;
故选:A.
【点睛】
此题考查了等腰三角形的性质,垂直平分线的性质,三角形内角和定理等知识点的综合运用.恰当作出辅助线是正确解答本题的关键.
5、A
【分析】
作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
【详解】
解:如图,作点A关于x轴的对称点,则PA=,
∴≤(当P、、B共线时取等号),
连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
设直线的函数表达式为y=kx+b,
将(1,-1)、B(2,-3)代入,得:
,解得:,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴y=-2x+1,
当y=0时,由0=-2x+1得:x=,
∴点P坐标为(,0),
故选:A
【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
6、A
【分析】
根据平行线的判定逐个判断即可.
【详解】
解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
∴∠3=∠5,
因为”同旁内角互补,两直线平行“,
所以本选项不能判断AB∥CD;
B、∵∠3=∠4,
∴AB∥CD,
故本选项能判定AB∥CD;
C、∵,
∴AB∥CD,
故本选项能判定AB∥CD;
D、∵∠1=∠5,
∴AB∥CD,
故本选项能判定AB∥CD;
故选:A.
【点睛】
本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
7、C
【分析】
利用数轴,得到,,然后对每个选项进行判断,即可得到答案.
【详解】
解:根据数轴可知,,,
∴,故A错误;
,故B错误;
,故C正确;
,故D错误;
故选:C
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了数轴,解题的关键是由数轴得出,,本题属于基础题型.
8、A
【分析】
由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.
【详解】
由折叠的性质得,,
∴,,
∴,
∵,
∴,
∴,
在与中,
,
∴,
∴,,
设,则,
∴,
解得:,
∴,,
∴.
故选:A.
【点睛】
本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
9、C
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
10、B
【分析】
根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
【详解】
解:∵ADBC,
∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
∴,故A正确,不符合题意;
∵ADBC,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴△DOE∽△BOF,
∴,
∴,
∴,故B错误,符合题意;
∵ADBC,
∴△AOD∽△COB,
∴,
∴,故C正确,不符合题意;
∴ ,
∴,故D正确,不符合题意;
故选:B
【点睛】
本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
二、填空题
1、 141 143
【解析】
【分析】
根据平均数,众数的性质分别计算出结果即可.
【详解】
解:根据题目给出的数据,可得:
平均数为:=143;
141出现了5次,出现次数最多,则众数是:141;
故答案为:141;143.
【点睛】
本题考查的是平均数,众数,熟悉相关的计算方法是解题的关键.
2、
【解析】
【分析】
连接CE,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,即可此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.
【详解】
解:连接CE,
∵沿AD折叠C和E重合,
∴∠ACD=∠AED=90°,AC=AE=10,∠CAD=∠EAD,
∴BE=10-10,AD垂直平分CE,即C和E关于AD对称,CD=DE,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,
∴△PEB的周长的最小值是BC+BE=10+10-10=10.
故答案为:10.
【点睛】
本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,关键是求出P点的位置.
3、8
【解析】
【分析】
如图,连接PB.利用线段的垂直平分线的性质,可知PC=PB,推出PA+PC=PA+PB≥AB,即可解决问题.
【详解】
解:如图,连接PB.
∵MN垂直平分线段BC,
∴PC=PB,
∴PA+PC=PA+PB,
∵PA+PB≥AB=BD+DA=5+3=8,
∴PA+PC≥8,
∴PA+PC的最小值为8.
故答案为:8.
【点睛】
本题考查轴对称﹣最短问题,线段的垂直平分线的性质等知识,解题的关键是学会利用两点之间线段最短解决最短问题,属于中考常考题型.
4、五
【解析】
【分析】
根据过多边形的一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,计算可求解.
【详解】
解:设这是个n边形,由题意得
n-2=3,
∴n=5,
故答案为:五.
【点睛】
本题主要考查多边形的对角线,掌握多边形对角线的性质是解题的关键.
5、##
【解析】
【分析】
根据正方形的性质可得,过E作EG⊥BC于G,证明三角形EGC是等腰直角三角形,再根据直角三角形BEG利用勾股定理列方程即可.
【详解】
过E作EG⊥BC于G
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵正方形 边长为2
∴,
∵
∴
∴三角形EGC是等腰直角三角形
∴,
在Rt△BEG中,
∴
解得:
∴
∴
【点睛】
本题考查正方形的性质及勾股定理,解题的关键是证明三角形EGC是等腰直角三角形,最终根据勾股定理列方程计算即可.
三、解答题
1、每件商品应降价1元.
【分析】
设每件商品应降价x元,得出降价后的销量及每件的盈利,然后可列出方程,解出即可.
【详解】
解:设每件商品应降价x元,则每天可售出300+20=300+200x件,
由题意得:(2-x)(300+200x)=500,
解得:x=(舍去)或x=1.
每件商品应降价1元.
【点睛】
本题考查一元二次方程的应用,关键找到降价和卖的件数的关系,根据利润列方程求解.
2、
(1)①4,5;②图见解析
(2)
【分析】
(1)①将代入方程可得的值,将代入方程可得的值;
②先确定三个解的对应点的坐标,再在所给的平面直角坐标系中画出即可得;
(2)将点,代入方程可得一个关于二元一次方程组,解方程组即可得.
(1)
解:①将代入方程得:,
解得,即,
将代入方程得:,
解得,即,
故答案为:4,5;
②由题意,三个解的对应点的坐标分别为,,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在所给的平面直角坐标系中画出如图所示:
(2)
解:由题意,将代入得:,
整理得:,
解得.
【点睛】
本题考查了二元一次方程(组)、平面直角坐标系等知识点,熟练掌握二元一次方程组的解法是解题关键.
3、
(1)22.5°;
(2)d=2t;
(3)5
【分析】
(1)由轴对称,得到∠ABC=2,利用,得到∠A=3,根据∠A+=90°,求出的度数;
(2)由轴对称关系求出AD=6t,根据,推出∠ADP=∠BAO,证得AP=DP,过点P作PH⊥AD于H,求出OH=AH-AO=2t,可得d与t之间的数量关系;
(3)连接DQ,过P作PM⊥y轴于M,求出∠EAP=∠DPQ=,证明△EAP≌△QPD,推出∠PDQ=∠APE=,得到∠ODQ=90°,证明∠MPF=∠MFP=45°,结合,求出BF=,由,求出t=1,得到OA=1,OD=5,由此求出点Q的横坐标.
(1)
解:∵和关于y轴对称,
∴∠ABO=∠CBO,
∴∠ABC=2,
∵,
∴∠A=3,
∵∠A+=90°,
∴=22.5°;
(2)
解:∵和关于y轴对称,
∴∠BAO=∠BCO,
∵,
∴OD=5t,AD=6t,
∵,
∴∠ADP=∠BCO,
∴∠ADP=∠BAO,
∴AP=DP,
过点P作PH⊥AD于H,则AH=DH=3t,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴OH=AH-AO=2t,
∴d=2t;
(3)
解:∵=22.5°,∠ABC=2=45°,AB=BC,
∴∠BAC=∠ACB=∠ADP=,∠APD=45°,
∵,
∴∠APE=,∠AEP=45°,
∴∠EAP=∠DPQ=,
∵AP=DP,AE=PQ,
∴△EAP≌△QPD,
∴∠PDQ=∠APE=,
∴∠ODQ=90°,
连接DQ,过P作PM⊥y轴于M,
∵∠AEP=45°,
∴∠MPF=∠MFP=45°,
∴MF=MP,
∵,MP=2t,
∴,
∵∠APE=,∠PBF=∠ABO=,
∴∠PBF=∠APE,
∴BF=,
∵,
∴,
得t=1,
∴OA=1,OD=5,
∴点Q的横坐标为5.
【点睛】
此题考查了三角形内角和定理的应用,轴对称的性质,等腰三角形的性质,平行线的性质,全等三角形的判定及性质,勾股定理,求点坐标,综合掌握各知识点并熟练应用解决问题是解题的关键.
4、
(1)见解析
(2)见解析
【分析】
(1)利用已知条件证明即可;
(2)通过证明得出,再根据,得出结论.
(1)
证明:,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
,
,
,
;
(2)
证明,点是边上的中点,
,,
,
,
,
,
,
,
,
,
,
,
即.
【点睛】
本题考查了三角形相似的判定和性质以及直角三角形和等腰三角形的性质,解题的关键是掌握相似三角形的判定定理进行证明.
5、
(1)110am2;
(2)19800
【分析】
(1)用大长方形的面积减去两个小长方形即可;
(2)将a=3代入利用(1)的面积再乘以60得到答案.
(1)
解:花圃的面积==110a(m2);
(2)
解:当a=3m时,
修建花圃的费用=(元).
【点睛】
此题考查了求图形面积,整数乘法计算,正确掌握图形面积的计算方法是解题的关键.
一分钟跳绳个数(个)
141
144
145
146
学生人数(名)
5
2
1
2
x
-3
-1
n
y
6
m
-2
【难点解析】湖南省武冈市中考数学三年高频真题汇总卷(含详解): 这是一份【难点解析】湖南省武冈市中考数学三年高频真题汇总卷(含详解),共25页。试卷主要包含了如图,点B等内容,欢迎下载使用。
【高频真题解析】湖南省中考数学真题汇总 卷(Ⅱ)(含详解): 这是一份【高频真题解析】湖南省中考数学真题汇总 卷(Ⅱ)(含详解),共30页。试卷主要包含了下列计算中,正确的是,利用如图①所示的长为a等内容,欢迎下载使用。
【高频真题解析】湖南省益阳市中考数学三年高频真题汇总 卷(Ⅰ)(含详解): 这是一份【高频真题解析】湖南省益阳市中考数学三年高频真题汇总 卷(Ⅰ)(含详解),共25页。试卷主要包含了抛物线的顶点为,如图,E,如图,点B等内容,欢迎下载使用。