搜索
    上传资料 赚现金
    英语朗读宝

    【难点解析】湖南省长沙市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)

    【难点解析】湖南省长沙市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)第1页
    【难点解析】湖南省长沙市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)第2页
    【难点解析】湖南省长沙市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【难点解析】湖南省长沙市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)

    展开

    这是一份【难点解析】湖南省长沙市中考数学历年真题汇总 卷(Ⅲ)(含答案解析),共34页。试卷主要包含了下列图形是全等图形的是,下列方程中,解为的方程是,如图,等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°
    A.B.C.D.
    2、已知单项式5xayb+2的次数是3次,则a+b的值是( )
    A.1B.3C.4D.0
    3、如图,O是直线AB上一点,则图中互为补角的角共有( )
    A.1对B.2对C.3对D.4对
    4、下列图形是全等图形的是( )
    A.B.C.D.
    5、下列方程中,解为的方程是( )
    A.B.C.D.
    6、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    A.米B.10米C.米D.12米
    7、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.将沿轴翻折得到
    B.将沿直线翻折,再向下平移个单位得到
    C.将向下平移个单位,再沿直线翻折得到
    D.将向下平移个单位,再沿直线翻折得到
    8、如图,、是的切线,、是切点,点在上,且,则等于( )
    A.54°B.58°C.64°D.68°
    9、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )
    A.B.C.D.
    10、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,直角三角形AOB的直角边OA在数轴上,AB与数轴垂直,点O与数轴原点重合,点A表示的实数是2,BA=2,以点O为圆心,OB的长为半径画弧,与数轴交于点C,则点C对应的数是_____.
    2、下列各数①-2.5,②0,③,④,⑤,⑥-0.52522252225…,是无理数的序号是______.
    3、如图,均是由若干个的基础图形组成的有规律的图案,第①个图案由4个基础图形组成,第②个图案由7个基础图形组成,…,按此规律排列下去,第④个图案中的基础图形个数为______,用式子表示第n个图案中的基础图形个数为______.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    4、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
    5、如图,AC为正方形ABCD的对角线,E为AC上一点,连接EB,ED,当时,的度数为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图1,在平面直角坐标系中,已知、、、,以为边在下方作正方形.
    (1)求直线的解析式;
    (2)点为正方形边上一点,若,求的坐标;
    (3)点为正方形边上一点,为轴上一点,若点绕点按顺时针方向旋转后落在线段上,请直接写出的取值范围.
    2、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).
    (1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;
    (2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;
    (3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.
    3、已知:如图,锐角∠AOB.
    求作:射线OP,使OP平分∠AOB.
    作法:
    ①在射线OB上任取一点M;
    ②以点M为圆心,MO的长为半径画圆,分别交射线OA,OB于C,D两点;
    ③分别以点C,D为圆心,大于的长为半径画弧,在∠AOB内部两弧交于点H;
    ④作射线MH,交⊙M于点P;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ⑤作射线OP.
    射线OP即为所求.
    (1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
    (2)完成下面的证明.
    证明:连接CD.
    由作法可知MH垂直平分弦CD.
    ∴( )(填推理依据).
    ∴∠COP = .
    即射线OP平分∠AOB.
    4、解方程:
    (1);
    (2).
    5、某商店用3700元购进A、B两种玻璃保温杯共80个,这两种玻璃保温杯的进价、标价如下表所示:
    (1)这两种玻璃保温杯各购进多少个?
    (2)已知A型玻璃保温杯按标价的8折出售,B型玻璃保温杯按标价的7.5折出售.在运输过程中有2个A型和1个B型玻璃保温杯不慎损坏,不能销售,请问在其它玻璃保温杯全部售出的情况下,该商店共获利多少元?
    -参考答案-
    一、单选题
    1、C
    【分析】
    根据平行线的性质可得,进而根据即可求解
    【详解】
    解:
    故选C
    【点睛】
    本题考查了平行线的性质,掌握平行线的性质是解题的关键.
    2、A
    【分析】
    根据单项式的次数的概念求解.
    【详解】
    解:由题意得:a+b+2=3,
    ∴a+b=1.
    故选:A.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.
    3、B
    【分析】
    根据补角定义解答.
    【详解】
    解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
    故选:B.
    【点睛】
    此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
    4、D
    【详解】
    解:A、不是全等图形,故本选项不符合题意;
    B、不是全等图形,故本选项不符合题意;
    C、不是全等图形,故本选项不符合题意;
    D、全等图形,故本选项符合题意;
    故选:D
    【点睛】
    本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.
    5、D
    【分析】
    求出选项各方程的解即可.
    【详解】
    A、,解得:,不符合题意.
    B、,解得:,不符合题意.
    C、,解得:,不符合题意.
    D、,解得:,符合题意.
    故选:D .
    【点睛】
    此题考查的知识点是一元一次方程的解,关键是分别求出各方程的解.
    6、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    7、C
    【分析】
    根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.
    【详解】
    解:A、根据图象可得:将沿x轴翻折得到,作图正确;
    B、作图过程如图所示,作图正确;
    C、如下图所示为作图过程,作图错误;
    D、如图所示为作图过程,作图正确;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故选:C.
    【点睛】
    题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.
    8、C
    【分析】
    连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
    【详解】
    解:连接,,如下图:

    ∵PA、PB是的切线,A、B是切点

    ∴由四边形的内角和可得:
    故选C.
    【点睛】
    此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
    9、A
    【分析】
    根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.
    【详解】
    解:B是俯视图,C是左视图,D是主视图,
    故四个平面图形中A不是这个几何体的三视图.
    故选:A.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.
    10、B
    【分析】
    根据三角尺可得,根据三角形的外角性质即可求得
    【详解】
    解:
    故选B
    【点睛】
    本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    先利用勾股定理求出,再根据作图过程可得,然后根据实数与数轴的关系即可得.
    【详解】
    解:由题意得:,

    由作图过程可知,,
    由数轴的性质可知,点对应的数大于0,
    则在数轴上,点对应的数是,
    故答案为:.
    【点睛】
    本题考查了勾股定理、实数与数轴,掌握理解勾股定理是解题关键.
    2、③
    【解析】
    【分析】
    根据无理数的定义逐个判断即可.
    【详解】
    解:-2.5,是分数;-0.52522252225…是无限循环小数,是有理数;0,是整数;无理数有,
    故答案为:③.
    【点睛】
    本题考查了无理数的定义,能熟记无理数的定义是解此题的关键,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.
    3、 13
    【解析】
    【分析】
    根据前三个图形中基础图形的个数得出第n个图案中基础图形的个数为3n+1即可.
    【详解】
    解:观察图形,可知
    第①个图案由4个基础图形组成,即4=1×3+1,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    第②个图案由7个基础图形组成,即7=2×3+1,
    第③个图案由10个基础图形组成,即10=3×3+1,

    第④个图案中的基础图形个数为13=3×4+1,
    第n个图案的基础图形的个数为:3n+1.
    故答案为:13,3n+1.
    【点睛】
    本题考查了图形的变化类、列代数式,解决本题的关键是观察图形的变化寻找规律.
    4、20
    【解析】
    【分析】
    根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
    【详解】
    解:如图,过B作BE⊥AC于E.
    在直角三角形ABE中,
    ∠BAC=30°,AB=5,
    ∴BE=AB=,
    S△ABC=AC•BE=10,
    ∴S▱ABCD=2S△ABC=20(cm2).
    故答案为:20.
    【点睛】
    本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
    5、18°##18度
    【解析】
    【分析】
    由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=∠BED=63°,由三角形的外角的性质可求解.
    【详解】
    证明:∵四边形ABCD是正方形,
    ∴AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,
    在△DCE和△BCE中,

    ∴△DCE≌△BCE(SAS),
    ∴∠CED=∠CEB=∠BED=63°,
    ∵∠CED=∠CAD+∠ADE,
    ∴∠ADE=63°-45°=18°,
    故答案为:18°.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE≌△BCE是本题的关键.
    三、解答题
    1、
    (1)
    (2),,,
    (3)或
    【分析】
    (1)待定系数法求直线解析式,代入坐标、得出,解方程组即可;
    (1)根据OA=2,OB=4,设点P在y轴上,点P坐标为(0,m),根据S△ABP=8,求出点P(0,4)或(0,-12),过P(0,4)作AB的平行线交正方形CDEF边两点N1和N2,利用平行线性质求出与AB平行过点P的解析式,与CD,FE的交点,过点P(0,-12)作AB的平行线交正方形CDEF边两点N3和N4,利用平行线性质求出与AB平行过点P的解析式,求出与DE,EF的交点即可;
    (3):根据点N在正方形边上,分四种情况①在上,过N′作GN′⊥y轴于G,正方形边CD与y轴交于H,在y轴正半轴上,先证△HNM1≌△GM1N′(AAS),求出点N′(6-m,m-6)在线段AB上,代入解析式直线的解析式得出,当点N旋转与点B重合,可得M2N′=NM2-OB=6-4=2②在上,当点N绕点M3旋转与点A重合,先证△HNM3≌△GM3N′(AAS),DH=M3G=6-2=4,HM3=GN′=2,③在上,当点N与点F重合绕点M4旋转到AB上N′先证△M5NM3≌△GM3N′(AAS),得出点N′(-6-m,m+6),点N′在线段AB上,直线的解析式,得出方程,,当点N绕点M5旋转点N′与点A重合,证明△FM3N≌△OM5N′(AAS),可得FM5=M5O=6,FN=ON′=2,④在上,点N绕点M6旋转点N′与点B重合,MN=MB=2即可.
    (1)
    解:设,代入坐标、得:


    ∴直线的解析式;
    (2)
    解:∵、、OA=2,OB=4,设点P在y轴上,点P坐标为(0,m)
    ∵S△ABP=8,
    ∴,
    ∴,
    解得,
    ∴点P(0,4)或(0,-12),
    过P(0,4)作AB的平行线交正方形CDEF边两点N1和N2,
    设解析式为,m=2,n=4,
    ∴,
    当y=6时,,
    解得,
    当y=-6时,,
    解得,
    ,,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    过点P(0,-12)作AB的平行线交正方形CDEF边两点N3和N4,
    设解析式为,

    当y=-6, ,
    解得:,
    当x=6, ,
    解得,

    ∴,的坐标为或或或,
    (3)
    解:①在上,过N′作GN′⊥y轴于G,正方形边CD与y轴交于H,在y轴正半轴上,
    ∵M1N=M1N′,∠NM1N′=90°,
    ∴∠HNM1+∠HM1N=90°,∠HM1N+∠GM1N′=90°,
    ∴∠HNM1=∠GM1N′,
    在△HNM1和△GM1N′中,

    ∴△HNM1≌△GM1N′(AAS),
    ∴DH=M1G=6,HM1=GN′=6-m,
    ∵点N′(6-m,m-6)在线段AB上,直线的解析式;
    即,
    解得,
    当点N旋转与点B重合,
    ∴M2N′=NM2-OB=6-4=2,
    ,,

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ②在上,
    当点N绕点M3旋转与点A重合,
    ∵M3N=M3N′,∠NM3N′=90°,
    ∴∠HNM3+∠HM3N=90°,∠HM3N+∠GM3N′=90°,
    ∴∠HNM3=∠GM3N′,
    在△HNM3和△GM3N′中,

    ∴△HNM3≌△GM3N′(AAS),
    ∴DH=M3G=6-2=4,HM3=GN′=2,
    ,,
    ③在上,
    当点N与点F重合绕点M4旋转到AB上N′,
    ∵M4N=M4N′,∠NM4N′=90°,
    ∴∠M5NM4+∠M5M4N=90°,∠M5M4N+∠GM4N′=90°,
    ∴∠M5NM4=∠GM4N′,
    在△M5NM4和△GM4N′中,

    ∴△M5NM3≌△GM3N′(AAS),
    ∴FM5=M4G=6,M5M4=GN′=-6-m,
    ∴点N′(-6-m,m+6),
    点N′在线段AB上,直线的解析式;

    解得,
    当点N绕点M5旋转点N′与点A重合,
    ∵M5N=M5N′,∠NM5N′=90°,
    ∴∠NM5O+∠FM5N=90°,∠OM5N+∠OM5N′=90°,
    ∴∠FM5N=∠OM5N′,
    在△FM5N和△OM5N′中,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ∴△FM3N≌△OM5N′(AAS),
    ∴FM5=M5O=6,FN=ON′=2,
    ,,,
    ④在上,
    点N绕点M6旋转点N′与点B重合,MN=MB=2,
    ,,,
    综上:或
    【点睛】
    本题考查图形与坐标,待定系数法求一次函数解析式,正方形的性质,平行线性质,图形旋转,三角形全等判定与性质,一元一次方程,不等式,本题难度,图形复杂,应用知识多,要求有很强的解题能力.
    2、
    (1)点E,点F;
    (2)()或();
    (3)b的取值范围1<b<2或2<b<3.
    【分析】
    (1)根据以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,△ABE为直角三角形,且AE大于AB;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,BF大于AB即可;
    (2)根据点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,得出△AOB为等腰直角三角形,可得∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,利用待定系数法求出AS解析式为,联立方程组,以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,∠OBR=90°-∠ABO=45°,可得△OBR为等腰直角三角形,OR=OB=1,点R(0,-1),利用平移的性质可求BR解析式为,联立方程组,解方程组即可;
    (3)过点A与AB垂直的直线交直线y=2x+2于U,把△AOB绕点A顺时针旋转90°,得△AO′U,AO′=AO=1,O′U=OB=b,根据点U(-1,b-1)在直线上,得出方程,求出b的值,当过点A的直线与直线平行时没有 “关联点”,OB=OW=b=2,得出在1<b<2时,直线上存在两个AB的“关联点”,当b>2时,根据旋转性质将△AOB绕点A逆时针旋转90°得到△AO′U,得出AO′=AO=1,O′U=OB=b,根据点U(1,1+b)在直线上,列方程,得出即可.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)
    解:点D与AB纵坐标相同,在直线AB上,不能构成直角三角形,
    以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,
    ∴△ABE为直角三角形,且AE大于AB;
    以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,AF=4>AB=2,
    ∴点E与点F是AB关联点,
    点G不在A、B两点垂直的直线上,故不能构成直角三角形,
    故答案为点E,点F;
    (2)
    解:∵点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,
    ∴△AOB为等腰直角三角形,AB=
    ∴∠ABO=∠BAO=45°,
    以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,
    ∴∠OAS=90°-∠BAO=45°,
    ∴△AOS为等腰直角三角形,
    ∴OS=OA=1,点S(1,0),
    设AS解析式为代入坐标得:

    解得,
    AS解析式为,
    ∴,
    解得,
    点P(),
    AP=,AP>AB
    以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,
    ∴∠OBR=90°-∠ABO=45°,
    ∴△OBR为等腰直角三角形,
    ∴OR=OB=1,点R(0,-1),
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    过点R与AS平行的直线为AS直线向下平移2个单位,
    则BR解析式为,
    ∴,
    解得,
    点P1(),
    AP1=>,
    ∴点P为线段AB的关联点,点P的坐标为()或();
    (3)
    解:过点A与AB垂直的直线交直线y=2x+2于U,
    把△AOB绕点A顺时针旋转90°,得△AO′U,
    ∴AO′=AO=1,O′U=OB=b,
    点U(-1,b-1)在直线上,

    ∴,
    ∴当b>1时存在两个“关联点”,
    当b<1时,UA<AB,不满足定义,没有两个“关联点”
    当过点A的直线与直线平行时没有 “关联点”
    与x轴交点X(-1,0),与y轴交点W(0,2)
    ∵OA=OX=1,∠XOW=∠AOB=90°,AB⊥XW,
    ∴△OXW顺时针旋转90°,得到△OAB,
    ∴OB=OW=2,
    ∴在1<b<2时,直线上存在两个AB的“关联点”,
    当b>2时,将△AOB绕点A逆时针旋转90°得到△AO′U,
    ∴AO′=AO=1,O′U=OB=b,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    点U(1,1+b)在直线上,

    ∴解得
    ∴当2<b<3时, 直线上存在两个AB的“关联点”,
    当b>3时,UA<AB,不满足定义,没有两个“关联点”
    综合得,b的取值范围1<b<2或2<b<3.
    【点睛】
    本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.
    3、
    (1)见解析
    (2)垂径定理及推论;∠DOP
    【分析】
    (1)根据题干在作图方法依次完成作图即可;
    (2)由垂径定理先证明 再利用圆周角定理证明即可.
    (1)
    解:如图, 射线OP即为所求.
    (2)
    证明:连接CD.
    由作法可知MH垂直平分弦CD.
    ∴( 垂径定理 )(填推理依据).
    ∴∠COP =.
    即射线OP平分∠AOB.
    【点睛】
    本题考查的是平分线的作图,垂径定理的应用,圆周角定理的应用,熟练的运用垂径定理证明是解本题的关键.
    4、
    (1)x=2;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)x=-1
    【分析】
    (1)根据一元一次方程的解法解答即可;
    (2)根据一元一次方程的解法解答即可.
    (1)
    解:去括号,得:8-4x+12=6x,
    移项、合并同类项,得:-10x=-20,
    化系数为1,得:x=2;
    (2)
    解:去分母,得:3(2x+3)-(x-2)=6,
    去括号,得:6x+9-x+2=6,
    移项、合并同类项,得:5x=-5,
    化系数为1,得:x=-1;
    【点睛】
    本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
    5、
    (1)购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
    (2)该商店共获利530元
    【分析】
    (1)设购进A型玻璃保温杯x个,根据购进两个型号玻璃保温杯的总价钱是3700元列方程求解即可;
    (2)根据单件利润=售价-进价和总利润=单件利润×销量求解即可.
    (1)
    解:设购进A型玻璃保温杯x个,则购进B型玻璃保温杯(80-x)个,
    根据题意,得:35x+65(80-x)=3700,
    解得:x=50,
    80-x=80-50=30(个),
    答:购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
    (2)
    解:根据题意,总利润为
    (50×0.8-35)×(50-2)+(100×0.75-65)×(30-1)
    =240+290
    =530(元),
    答:该商店共获利530元.
    【点睛】
    本题考查一元一次方程的应用、有理数混合运算的应用,理解题意,找准等量关系,正确列出方程和算式是解答的关键.
    价格\类型
    A型
    B型
    进价(元/个)
    35
    65
    标价(元/个)
    50
    100

    相关试卷

    【难点解析】湖南省武冈市中考数学历年真题汇总 卷(Ⅲ)(含答案详解):

    这是一份【难点解析】湖南省武冈市中考数学历年真题汇总 卷(Ⅲ)(含答案详解),共26页。试卷主要包含了下列各式中,不是代数式的是,如图,在中,,,,则的度数为,下列等式变形中,不正确的是等内容,欢迎下载使用。

    【难点解析】湖南省武冈市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解):

    这是一份【难点解析】湖南省武冈市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解),共29页。试卷主要包含了如图,A,和按如图所示的位置摆放,顶点B,代数式的意义是等内容,欢迎下载使用。

    【难点解析】湖南省汨罗市中考数学历年真题汇总 (A)卷(含答案及详解):

    这是一份【难点解析】湖南省汨罗市中考数学历年真题汇总 (A)卷(含答案及详解),共22页。试卷主要包含了下列式子中,与是同类项的是,下列各式中,不是代数式的是,已知,则的补角等于,如图,A等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map