年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    【难点解析】湖南省株洲市中考数学模拟真题测评 A卷(含答案解析)

    【难点解析】湖南省株洲市中考数学模拟真题测评 A卷(含答案解析)第1页
    【难点解析】湖南省株洲市中考数学模拟真题测评 A卷(含答案解析)第2页
    【难点解析】湖南省株洲市中考数学模拟真题测评 A卷(含答案解析)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【难点解析】湖南省株洲市中考数学模拟真题测评 A卷(含答案解析)

    展开

    这是一份【难点解析】湖南省株洲市中考数学模拟真题测评 A卷(含答案解析),共32页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、春节假期期间某一天早晨的气温是,中午上升了,则中午的气温是( )
    A.B.C.D.
    2、下列宣传图案中,既中心对称图形又是轴对称图形的是( )
    A.B.
    C.D.
    3、有理数,在数轴上对应点如图所示,则下面式子中正确的是( )
    A.B.C.D.
    4、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
    A.B.C.D.
    5、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
    A.B.C.D.
    6、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.abB.a+bC.abD.a
    7、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
    A.B.C.D.
    8、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为( )
    A.1B.2C.D.
    9、下列函数中,随的增大而减小的是( )
    A.B.
    C.D.
    10、如图,O是直线AB上一点,则图中互为补角的角共有( )
    A.1对B.2对C.3对D.4对
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在中,BC的垂直平分线MN交AB于点D,若,,P是直线MN上的任意一点,则的最小值是______.
    2、如图,直角三角形AOB的直角边OA在数轴上,AB与数轴垂直,点O与数轴原点重合,点A表示的实数是2,BA=2,以点O为圆心,OB的长为半径画弧,与数轴交于点C,则点C对应的数是_____.
    3、如图,过的重心G作分别交边AC、BC于点E、D,联结AD,如果AD平分,,那么______.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    4、如图,AC为正方形ABCD的对角线,E为AC上一点,连接EB,ED,当时,的度数为______.
    5、在菱形中,对角线与之比是,那么________.
    三、解答题(5小题,每小题10分,共计50分)
    1、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).
    (1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;
    (2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;
    (3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.
    2、请阅读下面材料,并完成相应的任务;
    阿基米德折弦定理
    阿基米德(Arehimedes,公元前287—公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.
    阿拉伯Al-Biruni(973年—1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.
    阿基米德折弦定理:如图1,AB和BC是的两条弦(即折线ABC是圆的一条折弦),,M是的中点,则从点M向BC所作垂线的垂足D是折弦ABC的中点,即.
    这个定理有很多证明方法,下面是运用“垂线法”证明的部分证明过程.
    证明:如图2,过点M作射线AB,垂足为点H,连接MA,MB,MC.
    ∵M是的中点,
    ∴.

    任务:
    (1)请按照上面的证明思路,写出该证明的剩余部分;
    (2)如图3,已知等边三角形ABC内接于,D为上一点,,于点E,,连接AD,则的周长是______.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    3、已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为 E,ED的延长线与AC 的延长线交于点F,
    (1)求证:DE是⊙O的切线;
    (2)若⊙O的半径为4,∠F =30°,求DE的长.
    4、某演出票价为110元/人,若购买团体票有如下优惠:
    例如:200人作为一个团体购票,则需要支付票款元.甲、乙两个班全体学生准备去观看该演出,如果两个班作为一个团体去购票,则应付票款10065元.请列方程解决下列问题:
    (1)已知两个班总人数超过100人,求两个班总人数;
    (2)在(1)条件下,若甲班人数多于50人.乙班人数不足50人,但至少25人,如果两个班单独购票,一共应付票款11242元.求甲、乙两班分别有多少人?
    5、将两块完全相同的且含角的直角三角板和按如图所示位置放置,现将绕A点按逆时针方向旋转.如图,与交于点M,与交于点N,与交于点P.
    (1)在旋转过程中,连接,求证:所在的直线是线段的垂直平分线.
    (2)在旋转过程中,是否能成为直角三角形?若能,直接写出旋转角的度数;若不能,说明理由.
    -参考答案-
    一、单选题
    1、B
    【分析】
    根据题意可知,中午的气温是,然后计算即可.
    【详解】
    解:由题意可得,
    中午的气温是:°C,
    故选:.
    【点睛】
    本题考查有理数的加法,解答本题的关键是明确有理数加法的计算方法.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    2、C
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;
    B.不是轴对称图形,也不是中心对称图形,故本选项不合题意;
    C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
    D.不是轴对称图形,也不是中心对称图形,故本选项不合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    3、C
    【分析】
    先根据数轴可得,再根据有理数的加减法与乘法法则逐项判断即可得.
    【详解】
    解:由数轴得:.
    A、,此项错误;
    B、由得:,所以,此项错误;
    C、,此项正确;
    D、,此项错误;
    故选:C.
    【点睛】
    本题考查了数轴、绝对值、有理数的加减法与乘法,熟练掌握数轴的性质是解题关键.
    4、A
    【分析】
    作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
    【详解】
    解:如图,作点A关于x轴的对称点,则PA=,
    ∴≤(当P、、B共线时取等号),
    连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
    设直线的函数表达式为y=kx+b,
    将(1,-1)、B(2,-3)代入,得:
    ,解得:,
    ∴y=-2x+1,
    当y=0时,由0=-2x+1得:x=,
    ∴点P坐标为(,0),
    故选:A
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
    5、B
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,
    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    6、B
    【分析】
    先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
    作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.
    【详解】
    解:∵△ABC、△ADE都是等边三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE,
    ∴∠ABD=∠ACE,
    ∵AF=CF,
    ∴∠ABD=∠CBD=∠ACE=30°,
    ∴点E在射线CE上运动(∠ACE=30°),
    作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵CA=CM,∠ACM=60°,
    ∴△ACM是等边三角形,
    ∴△ACM≌△ACB,
    ∴FM=FB=b,
    ∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
    故选:B.
    【点睛】
    此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
    7、B
    【分析】
    根据三角尺可得,根据三角形的外角性质即可求得
    【详解】
    解:
    故选B
    【点睛】
    本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
    8、C
    【分析】
    取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.
    【详解】
    解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,
    ∵点A(1,0),B (3,0),
    ∴OA=1,OB=3,
    ∴OE=2,
    ∴ED=2×=,
    ∵∠ACB=90°,
    ∴点C在以AB为直径的圆上,
    ∴线段CD长的最小值为−1.
    故选:C.
    【点睛】
    本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.
    9、C
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
    【详解】
    解:A.在中,y随x的增大而增大,故选项A不符合题意;
    B.在中,y随x的增大与增大,不合题意;
    C.在中,当x>0时,y随x的增大而减小,符合题意;
    D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
    10、B
    【分析】
    根据补角定义解答.
    【详解】
    解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
    故选:B.
    【点睛】
    此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
    二、填空题
    1、8
    【解析】
    【分析】
    如图,连接PB.利用线段的垂直平分线的性质,可知PC=PB,推出PA+PC=PA+PB≥AB,即可解决问题.
    【详解】
    解:如图,连接PB.
    ∵MN垂直平分线段BC,
    ∴PC=PB,
    ∴PA+PC=PA+PB,
    ∵PA+PB≥AB=BD+DA=5+3=8,
    ∴PA+PC≥8,
    ∴PA+PC的最小值为8.
    故答案为:8.
    【点睛】
    本题考查轴对称﹣最短问题,线段的垂直平分线的性质等知识,解题的关键是学会利用两点之间线段最短解决最短问题,属于中考常考题型.
    2、
    【解析】
    【分析】
    先利用勾股定理求出,再根据作图过程可得,然后根据实数与数轴的关系即· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    可得.
    【详解】
    解:由题意得:,

    由作图过程可知,,
    由数轴的性质可知,点对应的数大于0,
    则在数轴上,点对应的数是,
    故答案为:.
    【点睛】
    本题考查了勾股定理、实数与数轴,掌握理解勾股定理是解题关键.
    3、8
    【解析】
    【分析】
    由重心的性质可以证明,再由AD平分和可得DE=AE,最后根据得到即可求出EC.
    【详解】
    连接CG并延长与AB交于H,
    ∵G是的重心



    ∴,,


    ∵AD平分



    ∴,

    【点睛】
    本题考查三角形的重心的性质、相似三角形的性质与判定、平行线分线段成比例,解题的关键是利用好平行线得到多个结论.
    4、18°##18度
    【解析】
    【分析】
    由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=∠BED=63°,由三角形的外角的性质可求解.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    证明:∵四边形ABCD是正方形,
    ∴AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,
    在△DCE和△BCE中,

    ∴△DCE≌△BCE(SAS),
    ∴∠CED=∠CEB=∠BED=63°,
    ∵∠CED=∠CAD+∠ADE,
    ∴∠ADE=63°-45°=18°,
    故答案为:18°.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE≌△BCE是本题的关键.
    5、
    【解析】
    【分析】
    首先根据菱形的性质得到,然后由对角线与之比是,可求得,然后根据正弦值的概念求解即可.
    【详解】
    解:如图所示,
    ∵在菱形中,

    ∵对角线与之比是,即

    ∴设,
    ∵菱形的对角线互相垂直,即
    ∴在中,

    故答案为:.
    【点睛】
    此题考查了菱形的性质,勾股定理和三角函数等知识,解题的关键是熟练掌握菱形的性质,勾股定理和三角函数的概念.
    三、解答题
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    1、
    (1)点E,点F;
    (2)()或();
    (3)b的取值范围1<b<2或2<b<3.
    【分析】
    (1)根据以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,△ABE为直角三角形,且AE大于AB;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,BF大于AB即可;
    (2)根据点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,得出△AOB为等腰直角三角形,可得∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,利用待定系数法求出AS解析式为,联立方程组,以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,∠OBR=90°-∠ABO=45°,可得△OBR为等腰直角三角形,OR=OB=1,点R(0,-1),利用平移的性质可求BR解析式为,联立方程组,解方程组即可;
    (3)过点A与AB垂直的直线交直线y=2x+2于U,把△AOB绕点A顺时针旋转90°,得△AO′U,AO′=AO=1,O′U=OB=b,根据点U(-1,b-1)在直线上,得出方程,求出b的值,当过点A的直线与直线平行时没有 “关联点”,OB=OW=b=2,得出在1<b<2时,直线上存在两个AB的“关联点”,当b>2时,根据旋转性质将△AOB绕点A逆时针旋转90°得到△AO′U,得出AO′=AO=1,O′U=OB=b,根据点U(1,1+b)在直线上,列方程,得出即可.
    (1)
    解:点D与AB纵坐标相同,在直线AB上,不能构成直角三角形,
    以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,
    ∴△ABE为直角三角形,且AE大于AB;
    以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,AF=4>AB=2,
    ∴点E与点F是AB关联点,
    点G不在A、B两点垂直的直线上,故不能构成直角三角形,
    故答案为点E,点F;
    (2)
    解:∵点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,
    ∴△AOB为等腰直角三角形,AB=
    ∴∠ABO=∠BAO=45°,
    以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,
    ∴∠OAS=90°-∠BAO=45°,
    ∴△AOS为等腰直角三角形,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴OS=OA=1,点S(1,0),
    设AS解析式为代入坐标得:

    解得,
    AS解析式为,
    ∴,
    解得,
    点P(),
    AP=,AP>AB
    以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,
    ∴∠OBR=90°-∠ABO=45°,
    ∴△OBR为等腰直角三角形,
    ∴OR=OB=1,点R(0,-1),
    过点R与AS平行的直线为AS直线向下平移2个单位,
    则BR解析式为,
    ∴,
    解得,
    点P1(),
    AP1=>,
    ∴点P为线段AB的关联点,点P的坐标为()或();
    (3)
    解:过点A与AB垂直的直线交直线y=2x+2于U,
    把△AOB绕点A顺时针旋转90°,得△AO′U,
    ∴AO′=AO=1,O′U=OB=b,
    点U(-1,b-1)在直线上,

    ∴,
    ∴当b>1时存在两个“关联点”,
    当b<1时,UA<AB,不满足定义,没有两个“关联点”
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    当过点A的直线与直线平行时没有 “关联点”
    与x轴交点X(-1,0),与y轴交点W(0,2)
    ∵OA=OX=1,∠XOW=∠AOB=90°,AB⊥XW,
    ∴△OXW顺时针旋转90°,得到△OAB,
    ∴OB=OW=2,
    ∴在1<b<2时,直线上存在两个AB的“关联点”,
    当b>2时,将△AOB绕点A逆时针旋转90°得到△AO′U,
    ∴AO′=AO=1,O′U=OB=b,
    点U(1,1+b)在直线上,

    ∴解得
    ∴当2<b<3时, 直线上存在两个AB的“关联点”,
    当b>3时,UA<AB,不满足定义,没有两个“关联点”
    综合得,b的取值范围1<b<2或2<b<3.
    【点睛】
    本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.
    2、(1)见解析;(2).
    【分析】
    (1)先证明,进而得到,再证明,最后由线段的和差解题;
    (2)连接CD,由阿基米德折弦定理得,BE=ED+AD,结合题意得到,由勾股定理解得,据此解题.
    【详解】
    证明:(1)是的中点,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    在与中,
    与中,

    (2)如图3,连接CD
    等边三角形ABC中,AB=BC
    由阿基米德折弦定理得,BE=ED+AD
    故答案为:.
    【点睛】
    本题考查圆的综合题、全等三角形的判定与性质、等腰三角形的性质、等边三角形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.
    3、
    (1)见解析
    (2)
    【分析】
    (1)连接AD、OD,根据等腰三角形的性质和圆周角定理可证得∠EAD=∠ODA,根据平行线在判定与性质可证得OD⊥DE,然后根据切线的判定即可证得结论;
    (2)根据含30°角的直角三角形的性质求得OF、DF,再根据平行线分线段成比例求解即可.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)
    证明:连接AD、OD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵AC是⊙O的直径,
    ∴∠ADC=90°即AD⊥BC,又AB=AC,
    ∴∠BAD=∠OAD,
    ∴∠EAD=∠ODA,
    ∴OD∥AB,
    ∵DE⊥AB,
    ∴OD⊥DE,又OD是半径,
    ∴DE是⊙O的切线;
    (2)
    解:在Rt△ODF中,OD=4,∠F=30°,
    ∴OF=2OD=8,DF= OD= ,
    ∵OD∥AB,
    ∴即,
    ∴.
    【点睛】
    本题考查等腰三角形的性质、圆周角定理、平行线的判定与性质、切线的判定、含30°角的直角三角形性质、平行线分线段成比例,综合性强,难度适中,熟练掌握相关知识的联系与运用是解答的关键.
    4、
    (1)人
    (2)甲班有人,乙班有人.
    【分析】
    (1)设两个班总人数为人,再根据各段费用之和为10065元,列方程,再解方程即可;
    (2)设乙班有人,则甲班有人,当时,则 再列方程 再解方程可得答案.
    (1)
    解:设两个班总人数为人,则
    整理得:
    解得:
    答:两个班总人数为人.
    (2)
    解:设乙班有人,则甲班有人,
    当时,则
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    整理得:
    解得:

    答:甲班有人,乙班有人.
    【点睛】
    本题考查的是一元一次方程的应用,最优化选择问题,分段计费问题,理解题意,确定相等关系列方程是解本题的关键.
    5、
    (1)见解析;
    (2)能成为直角三角形,=30°或60°
    【分析】
    (1)由全等三角形的性质可得∠AEF=∠ACB,AE=AC,根据等腰三角形的判定与性质证明∠PEC=∠PCE,PE=PC,然后根据线段垂直平分线的判定定理即可证得结论;
    (2)分∠CPN=90°和∠CNP=90°,利用旋转的性质和三角形的内角和定理求解即可.
    (1)
    证明:∵两块是完全相同的且含角的直角三角板和,
    ∴AE=AC,∠AEF=∠ACB=30°,∠F=60°,
    ∴∠AEC=∠ACE,
    ∴∠AEC-∠AEF=∠ACE-∠ACB,
    ∴∠PEC=∠PCE,
    ∴PE=PC,又AE=AC,
    ∴所在的直线是线段的垂直平分线.
    (2)
    解:在旋转过程中,能成为直角三角形,
    由旋转的性质得:∠FAC= ,
    当∠CNP=90°时,∠FNA=90°,又∠F=60°,
    ∴=∠FAC=180°-∠FNA-∠F=180°-90°-60°=30°;
    当∠CPN=90°时,∵∠NCP=30°,
    ∴∠PNC=180°-90°-30°=60°,即∠FNA=60°,
    ∵∠F=60°,
    ∴=∠FAC=180°-∠FNA-∠F=180°-60°-60°=60°,
    综上,旋转角的的度数为30°或60°.
    【点睛】
    本题考查直角三角板的度数、全等三角形的性质、等腰三角形的判定与性质、线段垂直平分线的判定、旋转性质、对顶角相等、三角形的内角和定理,熟练掌握相关知识的联系与运用是解答的关键.
    购票人数
    不超过50人的部分
    超过50人,但不超过100人的部分
    超过100人的部分
    优惠方案
    无优惠
    每线票价优惠20%
    每线票价优惠50%

    相关试卷

    【难点解析】湖南省中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解):

    这是一份【难点解析】湖南省中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共24页。试卷主要包含了如图,有三块菜地△ACD,如图,E等内容,欢迎下载使用。

    【难点解析】湖南省长沙市中考数学模拟真题测评 A卷(含答案解析):

    这是一份【难点解析】湖南省长沙市中考数学模拟真题测评 A卷(含答案解析),共25页。试卷主要包含了如图,某汽车离开某城市的距离y,下列方程变形不正确的是等内容,欢迎下载使用。

    【难点解析】湖南省武冈市中考数学模拟真题 (B)卷(含答案及解析):

    这是一份【难点解析】湖南省武冈市中考数学模拟真题 (B)卷(含答案及解析),共23页。试卷主要包含了不等式的最小整数解是,如图个三角形.等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map