搜索
    上传资料 赚现金
    英语朗读宝

    【真题汇编】河北省中考数学第三次模拟试题(含答案解析)

    【真题汇编】河北省中考数学第三次模拟试题(含答案解析)第1页
    【真题汇编】河北省中考数学第三次模拟试题(含答案解析)第2页
    【真题汇编】河北省中考数学第三次模拟试题(含答案解析)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【真题汇编】河北省中考数学第三次模拟试题(含答案解析)

    展开

    这是一份【真题汇编】河北省中考数学第三次模拟试题(含答案解析),共33页。试卷主要包含了利用如图①所示的长为a,如图,下列条件中不能判定的是,如图,点B等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
    A.B.C.D.
    2、如图,在中,D是延长线上一点,,,则的度数为( )
    A.B.C.D.
    3、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
    A.B.C.D.
    4、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )
    A.B.
    C.D.
    5、已知单项式5xayb+2的次数是3次,则a+b的值是( )
    A.1B.3C.4D.0
    6、如图,下列条件中不能判定的是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.B.C.D.
    7、已知反比例函数经过平移后可以得到函数,关于新函数,下列结论正确的是( )
    A.当时,y随x的增大而增大B.该函数的图象与y轴有交点
    C.该函数图象与x轴的交点为(1,0)D.当时,y的取值范围是
    8、若把边长为的等边三角形按相似比进行缩小,得到的等边三角形的边长为( )
    A.B.C.D.
    9、如图,点B、G、C在直线FE上,点D在线段AC上,下列是△ADB的外角的是( )
    A.∠FBAB.∠DBCC.∠CDBD.∠BDG
    10、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.
    2、某树主干长出x根枝干,每个枝干又长出x根小分支,若主干、枝干和小分支总数共133根,则主干长出枝干的根数x为______.
    3、如图,小张同学用两个互相垂直的长方形制作了一个“中”字,请根据图中信息用含x的代数式表示该“中”字的面积__________.
    4、如图,一架梯子AB斜靠在左墙时,梯子顶端B距地面2.4m,保持梯子底端A不动,将梯子斜靠在右墙时,梯子顶端C距地面2m,梯子底端A到右墙角E的距离比到左墙角D的距离多0.8m,则梯子的长度为_____m.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    5、平面内,,C为内部一点,射线平分,射找平分,射线平分,当时,的度数是____________.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知关于的二次函数.
    (1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;
    (2)若,两点在该二次函数的图象上,直接写出与的大小关系;
    (3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值.
    2、先把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来.
    ﹣2,-(﹣4),0,+(﹣1),1,﹣|﹣3|
    3、在等腰中,,,点在直线上.
    (1)如图1所示,点在上,点是的中点,连接.若,,求的周长;
    (2)如图2所示,点在的延长线上,连接,过点作的垂线交于点.点在上,于点,连接.若,,求证:;
    (3)如图3所示,点、在边上,连接、,,点是的中点,连接,与交于点.将沿着翻折,点的对应点是点,连接.若,,请直接写出的面积.
    4、已知:如图,在中,,,垂足为点D,E为边AC上一点,联结BE交CD于点F,并满足.求证:
    (1);
    (2)过点C作,交BE于点G,交AB于点M,求证:.
    5、小欣在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质.其研究过程如下:
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)绘制函数图象.
    ①列表:下表是x与y的几组对应值,其中______;
    ②描点:根据表中的数值描点,请补充描出点;
    ③连线:用平滑的曲线顺次连接各点,请把图象补充完整.
    (2)探究函数性质.
    判断下列说法是否正确(正确的填“√”,错误的填“×”).
    ①函数值y随x的增大而减小; ( )
    ②函数图象关于原点对称;( )
    ③函数图象与直线没有交点.( )
    (3)请你根据图象再写一条此函数的性质:______.
    -参考答案-
    一、单选题
    1、A
    【分析】
    作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
    【详解】
    解:如图,作点A关于x轴的对称点,则PA=,
    ∴≤(当P、、B共线时取等号),
    连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
    设直线的函数表达式为y=kx+b,
    将(1,-1)、B(2,-3)代入,得:
    ,解得:,
    ∴y=-2x+1,
    当y=0时,由0=-2x+1得:x=,
    ∴点P坐标为(,0),
    故选:A
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
    2、B
    【分析】
    根据三角形外角的性质可直接进行求解.
    【详解】
    解:∵,,
    ∴;
    故选B.
    【点睛】
    本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
    3、B
    【分析】
    根据三角形的中线的定义判断即可.
    【详解】
    解:∵AD、BE、CF是△ABC的三条中线,
    ∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
    故A、C、D都不一定正确;B正确.
    故选:B.
    【点睛】
    本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
    4、A
    【分析】
    整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.
    【详解】
    ∵大正方形边长为:,面积为:;
    1个小正方形的面积加上4个矩形的面积和为:;
    ∴.
    故选:A.
    【点睛】
    此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.
    5、A
    【分析】
    根据单项式的次数的概念求解.
    【详解】
    解:由题意得:a+b+2=3,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴a+b=1.
    故选:A.
    【点睛】
    本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.
    6、A
    【分析】
    根据平行线的判定逐个判断即可.
    【详解】
    解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
    ∴∠3=∠5,
    因为”同旁内角互补,两直线平行“,
    所以本选项不能判断AB∥CD;
    B、∵∠3=∠4,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    C、∵,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    D、∵∠1=∠5,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    故选:A.
    【点睛】
    本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
    7、C
    【分析】
    函数的图象是由函数的图象向下平移1个单位长度后得到的,根据两个函数的图像,可排除A,B,C选项,将y=0代入函数可得到函数与x轴交点坐标为(1,0),故C选项正确.
    【详解】
    解:函数与函数的图象如下图所示:
    函数的图象是由函数的图象向下平移1个单位长度后得到的,
    A、由图象可知函数,当时,y随x的增大而减小,选项说法错误,与题意不符;
    B、函数的图象是由函数的图象向下平移一个单位后得到的,所以函数与y轴无交点,选项说法错误,与题意不符;
    C、将y=0代入函数中得,,解得,故函数与x轴交点坐标为(1,0),选项说法正确,与题意相符;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    D、当时, ,有图像可知当时,y的取值范围是,故选项说法错误,与题意不符;
    故选:C.
    【点睛】
    本题考查反比例函数的图象,以及函数图象的平移,函数与数轴的交点求法,能够画出图象,并掌握数形结合的方法是解决本题的关键.
    8、A
    【分析】
    直接根据位似图形的性质求解即可
    【详解】
    解:∵把边长为的等边三角形按相似比进行缩小,
    ∴得到的新等边三角形的边长为:
    故选:A
    【点睛】
    本题主要考查了根据位似图形的性质求边长,熟练掌握位似图形的性质是解答本题的关键.
    9、C
    【分析】
    根据三角形的外角的概念解答即可.
    【详解】
    解:A.∠FBA是△ABC的外角,故不符合题意;
    B. ∠DBC不是任何三角形的外角,故不符合题意;
    C.∠CDB是∠ADB的外角,符合题意;
    D. ∠BDG不是任何三角形的外角,故不符合题意;
    故选:C.
    【点睛】
    本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
    10、D
    【分析】
    根据题意得出∠1=15°,再求∠1补角即可.
    【详解】
    由图形可得
    ∴∠1补角的度数为
    故选:D.
    【点睛】
    本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
    二、填空题
    1、##
    【解析】
    【分析】
    分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.
    【详解】
    解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    可知:顶点B(9,12),抛物线经过原点,
    设抛物线的解析式为y=a(x-9)2+12,
    将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,
    故抛物线的解析式为:y=-(x−9)²+12,
    ∵PC=12,=1:2,
    ∴点C的坐标为(12,0),AC=6,
    即可得点A的坐标为(12,6),
    当x=12时,y=−(12−9)²+12==CE,
    ∵E在A的正上方,
    ∴AE=CE-AC=-6=,
    故答案为:.
    【点睛】
    本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.
    2、
    【解析】
    【分析】
    某树主干长出x根枝干,每个枝干又长出x根小分支,则小分支有根,可得主干、枝干和小分支总数为根,再列方程解方程,从而可得答案.
    【详解】
    解:某树主干长出x根枝干,每个枝干又长出x根小分支,则



    解得:
    经检验:不符合题意;取
    答:主干长出枝干的根数x为
    故答案为:
    【点睛】
    本题考查的是一元二次方程的应用,理解题意,用含的代数式表示主干、枝干和小分支总数是解本题的关键.
    3、27x-27##-27+27x
    【解析】
    【分析】
    用两个互相垂直的长方形的面积之和减去重叠部分长方形的面积即可求解.
    【详解】
    解:“中”字的面积=3×3x+9×2x-3×9=9x+18x-27=27x-27,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故答案为:27x-27
    【点睛】
    此题考查列代数式,掌握长方形的面积表示方法是解答此题的关键.
    4、##
    【解析】
    【分析】
    设,则 结合再利用勾股定理建立方程再解方程求解 再利用勾股定理求解梯子的长即可.
    【详解】
    解:设,则 而
    由勾股定理可得:
    整理得:
    解得:

    所以梯子的长度为m.
    故答案为:
    【点睛】
    本题考查的是勾股定理的应用,熟练的利用勾股定理建立方程是解本题的关键.
    5、45°或15°
    【解析】
    【分析】
    根据角平分线的定义和角的运算,分射线OD在∠AOC外部和射线OD在∠AOC内部求解即可.
    【详解】
    解:∵射线平分,射找平分,
    ∴∠MOC= ∠AOC,∠NOC= ∠BOC,
    ∴∠MON=∠MOC+∠NOC=∠AOC+∠BOC=∠AOB=60°,
    ∵射线平分,
    ∴∠MOD= ∠MON=30°,
    若射线OD在∠AOC外部时,如图1,
    则∠COD=∠MOD-∠MOC=30°-∠AOC,
    即2∠COD=60°-∠AOC,
    ∵,
    ∴,
    解得:∠AOC=45°或15°;
    若射线OD在∠AOC内部时,如图2,
    则∠COD=∠MOC-∠MOD=∠AOC-30°,
    ∴2∠COD=∠AOC-60°,即∠AOC-2∠COD=60°,不满足,
    综上,∠AOC=45°或15°,
    故答案为:45°或15°.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    【点睛】
    本题考查角平分线的定义、角的运算,熟练掌握角平分线的定义和角的有关计算,利用分类讨论思想求解是解答的关键.
    三、解答题
    1、
    (1)见解析
    (2)
    (3)的值为1或-5
    【分析】
    (1)计算判别式的值,得到,即可判定;
    (2)计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;
    (3)先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可.
    (1)
    证明:令,则

    ∴不论为何实数,方程有两个不相等的实数根
    ∴无论为何实数,该二次函数的图象与轴总有两个公共点
    (2)
    解:二次函数的对称轴为:直线
    ∵,抛物线开口向上
    ∴抛物线上的点离对称轴越远对应的函数值越大

    ∴M点到对称轴的距离为:1
    N点到对称轴的距离为:2

    (3)
    解:∵抛物线
    ∴沿轴翻折后的函数解析式为
    ∴该抛物线的对称轴为直线
    ①若,即,则当时,有最小值

    解得,


    ②若,即,则当时,有最小值-1
    不合题意,舍去
    ③若,,则当时,有最小值
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    解得,


    综上,的值为1或-5
    【点睛】
    本题考查了抛物线与x轴的交点以及二次函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键.
    2、数轴见解析,-|-3|<-2<+(-1)<0<1<-(-4)
    【分析】
    先根据相反数,绝对值进行计算,再在数轴上表示出各个数,再比较大小即可.
    【详解】
    解:-(-4)=4,+(-1)=-1,-|-3|=-3,
    -|-3|<-2<+(-1)<0<1<-(-4).
    【点睛】
    本题考查了数轴,有理数的大小比较,绝对值和相反数等知识点,能正确在数轴上表示出各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.
    3、
    (1)
    (2)见解析
    (3)
    【分析】
    (1)过点作于点,根据,设,则,进而根据等腰直角三角形的性质表示出,根据勾股定理求得,进而求得的值,即可求得的周长;
    (2)过点作,垂足为,证明,设交于点,过点作交于,连接,证明四边形,是平行四边形,可得,又,进而即可得证;
    (3)过点作,连接,延长交于点,连接,,根据翻折的性质可得,点是的中点,,,可得,根据等底同高,进而证明,即可得则,根据相似三角形的性质以及正弦的定义可得,再根据相似三角形的性质可得,进而即可求得
    (1)
    如图,过点作于点,
    ,,
    设,则
    在中,
    是的中点
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    在中,,,
    在中,
    的周长为
    的周长为
    (2)
    如图,过点作,垂足为,
    在中,,,
    ,,
    在与中
    设交于点,过点作交于,连接,如图,
    是的高,
    垂直平分


    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·



    四边形是平行四边形

    四边形是平行四边形
    (3)
    如图,过点作,连接,延长交于点,连接,,
    翻折
    ,,
    点是的中点,


    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·



    是的中点,
    在中,
    如图,过点作
    又是的中点,

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    是的中点,是的中点
    ,为的中点
    设,则,

    【点睛】
    本题考查了解直角三角形,平行四边形的性质与判定,直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质与判定,轴对称的性质,勾股定理,相似三角形的性质与判定,掌握等腰直角三角形的性质,相似三角形的性质与判定是解题的关键.
    4、
    (1)见解析
    (2)见解析
    【分析】
    (1)由可得可得,然后再说明,即可证明结论;
    (2)说明即可证明结论.
    (1)
    证明:∵

    ∵,
    ∴∠BDC=
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ∵,
    ∴∠A+∠ABC=90°,∠DCB+∠ABC=90°,
    ∴∠A=∠DCB
    ∵∠CBD=∠CBD

    ∴.
    (2)
    解:∵
    ∴∠A=∠CBE

    ∴∠DCB=∠CBE
    ∵∠AEB=∠CBE+∠BCE,∠CFM=∠CDA+∠FMD
    ∴∠AEB=∠CFM
    ∵CG⊥BE,CD⊥AB,∠CFD=∠DFB
    ∴∠MCF=∠FBD

    ∴.
    【点睛】
    本题主要考查了相似三角形的判定与性质,灵活运用相似三角形的判定定理成为解答本题的关键.
    5、
    (1)①1;②描点见解析;③连线见解析
    (2)①×;②×;③√
    (3)当时,y随x的增大而减小
    【分析】
    (1)①将x=0代入即得m的值;②描出(0,1)即可;③把描出的点用平滑的曲线顺次连接即可;
    (2)根据图像数形结合即可判断.
    (3)根据图像再写一条符合反比例函数特点的性质即可.
    (1)
    ①解:将代入解析式中解得;
    ②描点如图所示③补充图像如图所示:
    (2)
    根据函数图像可得:
    ①每一个分支上的函数值y随x的增大而减小,故①错误,应为×;
    ②图像关于(-1,0)对称,故②错误,应为×;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ③x=-1时,无意义,函数图像与直线x=-1没有交点,应为√.
    (3)
    当时,y随x的增大而减小.
    【点睛】
    本题考查函数的图形及性质,解题的关键是熟练掌握研究函数的方法用列表、描点、连线作出图像,再数形结合研究函数性质.
    x

    0
    1
    2

    y

    3
    2
    m

    相关试卷

    【真题汇编】2022年最新中考数学第三次模拟试题(含详解):

    这是一份【真题汇编】2022年最新中考数学第三次模拟试题(含详解),共20页。试卷主要包含了方程的解是.等内容,欢迎下载使用。

    【真题汇编】中考数学真题模拟测评 (A)卷(含答案解析):

    这是一份【真题汇编】中考数学真题模拟测评 (A)卷(含答案解析),共24页。试卷主要包含了下列各数中,是不等式的解的是,若单项式与是同类项,则的值是等内容,欢迎下载使用。

    【真题汇编】2022年最新中考数学模拟真题练习 卷(Ⅱ)(含答案及解析):

    这是一份【真题汇编】2022年最新中考数学模拟真题练习 卷(Ⅱ)(含答案及解析),共25页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map