搜索
    上传资料 赚现金
    英语朗读宝

    【真题汇编】湖南省娄底市中考数学备考真题模拟测评 卷(Ⅰ)(精选)

    【真题汇编】湖南省娄底市中考数学备考真题模拟测评 卷(Ⅰ)(精选)第1页
    【真题汇编】湖南省娄底市中考数学备考真题模拟测评 卷(Ⅰ)(精选)第2页
    【真题汇编】湖南省娄底市中考数学备考真题模拟测评 卷(Ⅰ)(精选)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【真题汇编】湖南省娄底市中考数学备考真题模拟测评 卷(Ⅰ)(精选)

    展开

    这是一份【真题汇编】湖南省娄底市中考数学备考真题模拟测评 卷(Ⅰ)(精选),共31页。试卷主要包含了下列函数中,随的增大而减小的是,如图,下列条件中不能判定的是,一元二次方程的根为等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、用符号表示关于自然数x的代数式,我们规定:当x为偶数时,;当x为奇数时,.例如:,.设,,,…,.以此规律,得到一列数,,,…,,则这2022个数之和等于( )
    A.3631B.4719C.4723D.4725
    2、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    A.米B.10米C.米D.12米
    3、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
    A.75°B.70°C.65°D.55°
    4、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为( )
    A.1B.2C.D.
    5、下列函数中,随的增大而减小的是( )
    A.B.
    C.D.
    6、如图,于点,于点,于点,下列关于高的说法错误的是( )
    A.在中,是边上的高B.在中,是边上的高
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    C.在中,是边上的高D.在中,是边上的高
    7、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
    A.B.C.D.
    8、如图,下列条件中不能判定的是( )
    A.B.C.D.
    9、一元二次方程的根为( )
    A.B.C.D.
    10、已知直线与双曲线相交于,两点,若点的坐标为,则点的坐标为( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图是两个全等的三角形,图中字母表示三角形的边长,则∠的度数为________º.
    2、如图,,D为外一点,且交的延长线于E点,若,则_______.
    3、如图,在中,BC的垂直平分线MN交AB于点D,若,,P是直线MN上的任意一点,则的最小值是______.
    4、若,则的值是______.
    5、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,,.
    (1)尺规作图:
    ①作边的垂直平分线交于点,交于点;
    ②连接,作的平分线交于点;(要求:保留作图痕迹,不写作法)
    (2)在(1)所作的图中;求的度数.
    解:∵垂直平分线段,
    ∴,(_________)(填推理依据)
    ∴,(__________)(填推理依据)
    ∵,∴,
    ∵,
    ∴__________,
    ∴__________,
    ∵平分,
    ∴__________.
    2、如图,一次函数的图象与反比例函数的图象相交于和两点.
    (1)______,_______;
    (2)结合图象直接写出不等式的解集.
    3、在平面直角坐标系xOy中,已知点A(1,0)和点B(5,0).对于线段AB和直线AB外的一点C,给出如下定义:点C到线段AB两个端点的连线所构成的夹角∠ACB叫做线段AB关于点C的可视角,其中点C叫做线段AB的可视点.
    (1)在点D(-2,2)、E(1,4)、F(3,-2)中,使得线段AB的可视角为45°的可视点是 ;
    (2)⊙P为经过A,B两点的圆,点M是⊙P上线段AB的一个可视点.
    ① 当AB为⊙P的直径时,线段AB的可视角∠AMB为 度;
    ② 当⊙P的半径为4时,线段AB的可视角∠AMB为 度;
    (3)已知点N为y轴上的一个动点,当线段AB的可视角∠ANB最大时,求点N的坐标.
    4、(数学概念)如图1,A、B为数轴上不重合的两个点,P为数轴上任意一点,我们比较线段PA和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段PA和PB的长· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    度相等,则将线段PA或PB的长度定义为点P到线段AB的“靠近距离”.如图①,点A表示的数是-4,点B表示的数是2.
    (1)(概念理解)若点P表示的数是-2,则点P到线段AB的“靠近距离”为______;
    (2)(概念理解)若点P表示的数是m,点P到线段AB的“靠近距离”为3,则m的值为______(写出所有结果);
    (3)(概念应用)如图②,在数轴上,点P表示的数是-6,点A表示的数是-3,点B表示的数是2.点P以每秒2个单位长度的速度沿数轴向右运动,同时点B以每秒1个单位长度的速度沿数轴向右运动.设运动的时间为t秒,当点P到线段AB的“靠近距离”为2时,求t的值.
    5、如图,在中,,将绕点C旋转得到,连接AD.
    (1)如图1,点E恰好落在线段AB上.
    ①求证:;
    ②猜想和的关系,并说明理由;
    (2)如图2,在旋转过程中,射线BE交线段AC于点F,若,,求CF的长.
    -参考答案-
    一、单选题
    1、D
    【分析】
    根据题意分别求出x2=4,x3=2,x4=1,x5=4,…,由此可得从x2开始,每三个数循环一次,进而继续求解即可.
    【详解】
    解:∵x1=8,
    ∴x2=f(8)=4,
    x3=f(4)=2,
    x4=f(2)=1,
    x5=f(1)=4,
    …,
    从x2开始,每三个数循环一次,
    ∴(2022-1)÷3=6732,
    ∵x2+x3+x4=7,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴=8+673×7+4+2=4725.
    故选:D.
    【点睛】
    本题考查数字的变化规律,能够通过所给的数,通过计算找到数的循环规律是解题的关键.
    2、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    3、B
    【分析】
    直接根据圆周角定理求解.
    【详解】
    解:,

    故选:B.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    4、C
    【分析】
    取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.
    【详解】
    解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,
    ∵点A(1,0),B (3,0),
    ∴OA=1,OB=3,
    ∴OE=2,
    ∴ED=2×=,
    ∵∠ACB=90°,
    ∴点C在以AB为直径的圆上,
    ∴线段CD长的最小值为−1.
    故选:C.
    【点睛】
    本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.
    5、C
    【分析】
    根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
    【详解】
    解:A.在中,y随x的增大而增大,故选项A不符合题意;
    B.在中,y随x的增大与增大,不合题意;
    C.在中,当x>0时,y随x的增大而减小,符合题意;
    D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
    6、C
    【详解】
    解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
    B、在中,是边上的高,该说法正确,故本选项不符合题意;
    C、在中,不是边上的高,该说法错误,故本选项符合题意;
    D、在中,是边上的高,该说法正确,故本选项不符合题意;
    故选:C
    【点睛】
    本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    顶点到垂足之间的线段叫做三角形的高是解题的关键.
    7、A
    【分析】
    如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
    【详解】
    解:如图:过C作CE⊥OA,垂足为E,
    ∵菱形OABC,
    ∴OC=OA=4
    ∵,
    ∴∠OCE=30°
    ∵OC=4
    ∴OE=2
    ∴CE=
    ∴点C的坐标为.
    故选A.
    【点睛】
    本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
    8、A
    【分析】
    根据平行线的判定逐个判断即可.
    【详解】
    解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
    ∴∠3=∠5,
    因为”同旁内角互补,两直线平行“,
    所以本选项不能判断AB∥CD;
    B、∵∠3=∠4,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    C、∵,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    D、∵∠1=∠5,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    故选:A.
    【点睛】
    本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    9、C
    【分析】
    先移项,把方程化为 再利用直接开平方的方法解方程即可.
    【详解】
    解:,


    故选C
    【点睛】
    本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.
    10、A
    【分析】
    首先把点A坐标代入,求出k的值,再联立方程组求解即可
    【详解】
    解:把A代入,得:
    ∴k=4

    联立方程组
    解得,
    ∴点B坐标为(-2,-2)
    故选:A
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握代入法.
    二、填空题
    1、70
    【解析】
    【分析】
    如图(见解析),先根据三角形的内角和定理可得,再根据全等三角形的性质即可得.
    【详解】
    解:如图,由三角形的内角和定理得:,
    图中的两个三角形是全等三角形,在它们中,边长为和的两边的夹角分别为和,

    故答案为:70.
    【点睛】
    本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.
    2、2
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【解析】
    【分析】
    过点D作DM⊥CB于M,证出∠DAE=∠DBM,判定△ADE≌△BDM,得到DM=DE=3,证明四边形CEDM是矩形,得到CE=DM=3,由AE=1,求出BC=AC=2.
    【详解】
    解:∵DE⊥AC,
    ∴∠E=∠C=90°,
    ∴,
    过点D作DM⊥CB于M,则∠M=90°=∠E,
    ∵AD=BD,
    ∴∠BAD=∠ABD,
    ∵AC=BC,
    ∴∠CAB=∠CBA,
    ∴∠DAE=∠DBM,
    ∴△ADE≌△BDM,
    ∴DM=DE=3,
    ∵∠E=∠C=∠M =90°,
    ∴四边形CEDM是矩形,
    ∴CE=DM=3,
    ∵AE=1,
    ∴BC=AC=2,
    故答案为:2.
    【点睛】
    此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE≌△BDM是解题的关键.
    3、8
    【解析】
    【分析】
    如图,连接PB.利用线段的垂直平分线的性质,可知PC=PB,推出PA+PC=PA+PB≥AB,即可解决问题.
    【详解】
    解:如图,连接PB.
    ∵MN垂直平分线段BC,
    ∴PC=PB,
    ∴PA+PC=PA+PB,
    ∵PA+PB≥AB=BD+DA=5+3=8,
    ∴PA+PC≥8,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴PA+PC的最小值为8.
    故答案为:8.
    【点睛】
    本题考查轴对称﹣最短问题,线段的垂直平分线的性质等知识,解题的关键是学会利用两点之间线段最短解决最短问题,属于中考常考题型.
    4、-2
    【解析】
    【分析】
    将的值代入原式=计算可得.
    【详解】
    解:=
    将代入,原式==-2
    故答案为:-2
    【点睛】
    本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.
    5、49
    【解析】
    【分析】
    延长FE交AB于点M,则,,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.
    【详解】
    如图,延长FE交AB于点M,则,,
    ∵四边形ABCD是正方形,
    ∴,
    ∴是等腰直角三角形,
    ∴,
    在中,,
    ∴,
    ∴.
    故答案为:49.
    【点睛】
    本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.
    三、解答题
    1、(1)①图见解析;②图见解析;(2)线段垂直平分线上的点到这条线段两个端点的距离相等,等边对等角,110,80,40.
    【分析】
    (1)①根据线段垂直平分线的尺规作图即可得;
    ②先连接,再根据角平分线的尺规作图即可得;
    (2)先根据线段垂直平分线的性质可得,再根据等腰三角形的性质可得,然· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    后根据三角形的内角和定理可得,从而可得,最后根据角平分线的定义即可得.
    【详解】
    解:(1)①作边的垂直平分线交于点,交于点如图所示:
    ②连接,作的平分线交于点如图所示:
    (2)∵垂直平分线段,
    ∴,(线段垂直平分线上的点到这条线段两个端点的距离相等)
    ∴,(等边对等角)
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵平分,
    ∴.
    【点睛】
    本题考查了线段垂直平分线和角平分线的尺规作图、线段垂直平分线的性质、等腰三角形的性质等知识点,熟练掌握尺规作图和线段垂直平分线的性质是解题关键.
    2、
    (1),
    (2)或
    【分析】
    (1)把A(-1,m),B(n,-1)分别代入反比例函数解析式可求出m、n;
    (2)确定A点坐标为(-1,2),B点坐标为(2,-1),然后根据图象即可求得.
    (1)
    把A(-1,m),B(n,-1)分别代入得-m=-2,-n=-2,
    解得m=2,n=2,
    故答案为:2,2
    (2)
    ∵m=2,n=2,
    ∴A点坐标为(-1,2),B点坐标为(2,-1),
    根据图象可得,不等式的解集为或.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.
    3、
    (1)点E
    (2)① 90;② 30或150
    (3)N(0,)或(0,- )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    (1)AE、BE、AB满足勾股定理,且AE=AB,可知为等腰直角三角形,则∠AEB=45°,故E点可使线段AB的可视角为45°.
    (2)①由半径所对的圆周角为90°即可得出∠AMB为90°.
    ②连接AP、BP,即可得出为等边三角形,由圆周角定理即可求得∠AMB为30°或150°.
    (3)以AB为弦作圆M且过点N,由圆周角定理可得出当圆心角AMB最大时,圆周角ANB最大,由直线与圆的位置关系得出当y轴与圆M相切时圆心角AMB最大,进而可求得N点坐标.
    (1)
    连接AE,BE
    ∵AE=4,AB=4,AE⊥AB
    ∴为等腰直角三角形
    ∴∠AEB=45°.
    故使得线段AB的可视角为45°的可视点是点E.
    (2)
    ①有题意可知,此时AB为⊙P直径
    由半径所对的圆周角为90°可知∠AMB为90°
    ②当⊙P的半径为4时,AB为⊙P一条弦,连接AP,BP
    ∵BP=AP=4,AB=4
    ∴为等边三角形
    ∴∠APB=60°
    当点M在圆心一侧由圆周角定理知∠AMB=
    当点M不在圆心一侧由内切四边形性质可知∠AMB=180°-30°=150°
    (3)
    (3)解: ∵过不在同一条直线上的三点确定一个圆,
    ∴A、B、N三点共圆,且过A、B两点的圆有无数个,圆心在直线x=3上.
    即:点N的位置为过A、B两点的圆与y轴的交点.
    设过A、B两点的圆为⊙M,半径为r.
    当r3时,y轴与⊙M1交于两点,此时y轴与⊙M1相交,交点设为N1、N2.
    连接AM、BM、AN、BN、AM1、BM1、AN1、BN1.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    此时,∠ANB、∠AMB分别为⊙M中弧AB所对的圆周角和圆心角;
    ∠AN1B、∠AM1B分别为⊙M1中弧AB所对的圆周角和圆心角.
    ∵∠1=∠M1AM+∠AM1M,
    ∠2=∠M1BM+∠BM1M,
    ∴∠1+∠2=∠M1AM+∠AM1M+∠BM1M+∠M1BM,
    即∠AMB=∠M1AM+∠AM1B+∠M1BM
    ∴∠AMB>∠AM1B
    ∴∠ANB>∠AN1B
    ∵∠AN1B=∠AN2B
    ∴∠ANB>∠AN2B
    ∴当y轴与⊙M相切于点N时,∠ANB的值最大.
    在Rt△AMC中,AM=r=3,AC=2
    ∴MC=
    ∵MN⊥y轴,MC⊥AB,
    ∴四边形OCMN为矩形.
    ∴ON=MC=
    ∴N(0,)
    同理,当点N在y轴负半轴时,坐标为(0,- )
    综述所述,N(0,)或(0,-).
    【点睛】
    本题考查了圆周角定理,将可视角的定义转化为圆内弦AB的圆周角是解题的关键,再结合图象计算即可.
    4、
    (1)2;
    (2)-7或-1或5;
    (3)t的值为或或6或10.
    【分析】
    (1)由“靠近距离”的定义,可得答案;
    (2)点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时;②当点P在点A和点B之间时;③当点P在点B右侧时;
    (3)分四种情况进行讨论:①当点P在点A左侧,PA

    相关试卷

    【历年真题】湖南省岳阳市中考数学备考真题模拟测评 卷(Ⅰ)(精选):

    这是一份【历年真题】湖南省岳阳市中考数学备考真题模拟测评 卷(Ⅰ)(精选),共32页。试卷主要包含了下列现象等内容,欢迎下载使用。

    【历年真题】湖南省邵阳县中考数学模拟真题测评 A卷(精选):

    这是一份【历年真题】湖南省邵阳县中考数学模拟真题测评 A卷(精选),共22页。试卷主要包含了下列图像中表示是的函数的有几个等内容,欢迎下载使用。

    备考特训湖南省长沙市中考数学备考真题模拟测评 卷(Ⅰ)(精选):

    这是一份备考特训湖南省长沙市中考数学备考真题模拟测评 卷(Ⅰ)(精选),共29页。试卷主要包含了下列图像中表示是的函数的有几个,下列等式变形中,不正确的是,如图,A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map