|试卷下载
终身会员
搜索
    上传资料 赚现金
    【真题汇编】湖南省湘潭市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解)
    立即下载
    加入资料篮
    【真题汇编】湖南省湘潭市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解)01
    【真题汇编】湖南省湘潭市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解)02
    【真题汇编】湖南省湘潭市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解)03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【真题汇编】湖南省湘潭市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解)

    展开
    这是一份【真题汇编】湖南省湘潭市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解),共24页。试卷主要包含了下列语句中,不正确的是等内容,欢迎下载使用。

    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
    A.B.C.D.
    2、一元二次方程的根为( )
    A.B.C.D.
    3、春节假期期间某一天早晨的气温是,中午上升了,则中午的气温是( )
    A.B.C.D.
    4、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
    A.B.C.D.
    5、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
    A.2 个B.3 个C.4 个D.5 个.
    6、如图,O是直线AB上一点,则图中互为补角的角共有( )
    A.1对B.2对C.3对D.4对
    7、下列语句中,不正确的是( )
    A.0是单项式B.多项式的次数是4
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    C.的系数是D.的系数和次数都是1
    8、如图,于点,于点,于点,下列关于高的说法错误的是( )
    A.在中,是边上的高B.在中,是边上的高
    C.在中,是边上的高D.在中,是边上的高
    9、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
    A.B.C.D.
    10、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
    A.75°B.70°C.65°D.55°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2 m记作,则下降3m记作______.
    2、如图,在中,,,BE是高,且点D,F分别是边AB,BC的中点,则的周长等于______.
    3、比较大小:______(用“、或”填空).
    4、如图是正方体的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,那么在正方体的表面与“!”相对的汉字是________.
    5、在0,1,,四个数中,最小的数是__.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,等腰直角△ABC中,∠BAC=90°,在BC上取一点D,使得CD=AB,作∠ABC的角平分线交AD于E,请先按要求继续完成图形:以A为直角顶点,在AE右侧以AE为腰作等腰直角△AEF,其中∠EAF=90°.再解决以下问题:
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)求证:B,E,F三点共线;
    (2)连接CE,请问△ACE的面积和△ABF的面积有怎样的数量关系,并说明理由.
    2、(1)探究:如图1,ABCDEF,试说明.
    (2)应用:如图2,ABCD,点在、之间,与交于点,与交于点.若,,则的大小是多少?
    (3)拓展:如图3,直线在直线、之间,且ABCDEF,点、分别在直线、上,点是直线上的一个动点,且不在直线上,连接、.若,则 度(请直接写出答案).
    3、已知:在△ABC中,AB=AC,直线l过点A .
    (1)如图1,∠BAC=90°,分别过点B,C作直线l的垂线段BD,CE,垂足分别为D,E.
    ①依题意补全图1;
    ②用等式表示线段DE,BD,CE之间的数量关系,并证明;
    (2)如图2,当∠BAC≠90°时,设∠BAC=α(0°< α <180°),作∠CEA=∠BDA=α,点D,E在直线l上,直接用等式表示线段DE,BD,CE之间的数量关系为 .
    4、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.
    (1)随机摸取一个小球的标号是奇数,该事件的概率为_______;
    (2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出的小球标号相同的概率.
    5、已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为 E,ED的延长线与AC 的延长线交于点F,
    (1)求证:DE是⊙O的切线;
    (2)若⊙O的半径为4,∠F =30°,求DE的长.
    -参考答案-
    一、单选题
    1、B
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:如图:连接OB,
    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    2、C
    【分析】
    先移项,把方程化为 再利用直接开平方的方法解方程即可.
    【详解】
    解:,


    故选C
    【点睛】
    本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.
    3、B
    【分析】
    根据题意可知,中午的气温是,然后计算即可.
    【详解】
    解:由题意可得,
    中午的气温是:°C,
    故选:.
    【点睛】
    本题考查有理数的加法,解答本题的关键是明确有理数加法的计算方法.
    4、A
    【分析】
    如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
    【详解】
    解:如图:过C作CE⊥OA,垂足为E,
    ∵菱形OABC,
    ∴OC=OA=4
    ∵,
    ∴∠OCE=30°
    ∵OC=4
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴OE=2
    ∴CE=
    ∴点C的坐标为.
    故选A.
    【点睛】
    本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
    5、C
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
    (2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
    (3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
    (4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
    (5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
    故选C.
    【点睛】
    本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    6、B
    【分析】
    根据补角定义解答.
    【详解】
    解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
    故选:B.
    【点睛】
    此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
    7、D
    【分析】
    分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.
    【详解】
    解:A、0是单项式,正确,不符合题意;
    B、多项式的次数是4,正确,不符合题意;
    C、的系数是,正确,不符合题意;
    D、的系数是-1,次数是1,错误,符合题意,
    故选:D.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.
    8、C
    【详解】
    解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
    B、在中,是边上的高,该说法正确,故本选项不符合题意;
    C、在中,不是边上的高,该说法错误,故本选项符合题意;
    D、在中,是边上的高,该说法正确,故本选项不符合题意;
    故选:C
    【点睛】
    本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.
    9、D
    【分析】
    设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
    【详解】
    解:设半径为r,如解图,过点O作,
    ∵OB=OE,
    ∴,
    ∵四边形ABCD为矩形,
    ∴∠C=90°=∠OFB,∠OBF=∠DBC,
    ∴.
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴.
    在中,,即,
    又∵为的切线,
    ∴,
    ∴,
    解得或0(不合题意舍去).
    故选D.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
    10、B
    【分析】
    直接根据圆周角定理求解.
    【详解】
    解:,

    故选:B.
    【点睛】
    本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    二、填空题
    1、
    【解析】
    【分析】
    首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
    【详解】
    解:如果水位上升记为“+”,那么水位下降应记为“﹣”,所以水位下降3米记为﹣3m.
    故答案为:.
    【点睛】
    此题考查的知识点是正数和负数,关键是在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.
    2、20
    【解析】
    【分析】
    由题意易AF⊥BC,则有,然后根据直角三角形斜边中线定理可得,进而问题可求解.
    【详解】
    解:∵,F是边BC的中点,
    ∴AF⊥BC,
    ∵BE是高,
    ∴,
    ∵点D,F分别是边AB,BC的中点,,,
    ∴,
    ∴;
    故答案为20.
    【点睛】
    本题主要考查等腰三角形的性质及直角三角形斜边中线定理,熟练掌握等腰三角形的性质及直角三角形斜边中线定理是解题的关键.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    3、
    【解析】
    【分析】
    先求两个多项式的差,再根据结果比较大小即可.
    【详解】
    解:∵,
    =,
    =
    ∴,
    故答案为:.
    【点睛】
    本题考查了整式的加减,解题关键是熟练运用整式加减法则进行计算,根据结果判断大小.
    4、一
    【解析】
    【分析】
    正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
    【详解】
    解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“!”与“一”是相对面,
    故答案是:一.
    【点睛】
    本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
    5、-2
    【解析】
    【分析】
    由“负数一定小于正数和零”和“两个负数绝对值大的反而小”即可得到答案.
    【详解】
    ∵负数一定小于正数和零,两个负数绝对值大的反而小,
    ∴在0,1,,四个数中,最小的数是,
    故答案为:.
    【点睛】
    本题考查了有理数大小的比较,掌握“两个负数绝对值大的反而小”是解决问题的关键.
    三、解答题
    1、
    (1)见解析
    (2)△ACE的面积和△ABF的面积相等.理由见解析
    【分析】
    (1)利用等腰直角三角形的性质得到∠CAD=∠CDA=67.5°,利用角平分线的性质得到∠ABE=∠DBE=22.5°,∠BEA=135°,即可推出∠BEA+∠AEF=180°;
    (2)证明Rt△AEG≌Rt△AFH,利用全等三角形的性质得到EG= FH,则△ACE和△ABF等底等高,即可证明结论.
    (1)
    证明:∵等腰直角△ABC中,∠BAC=90°,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴∠ABC=∠C=45°,AB=AC,
    ∵CD=AB,则CD=AC,
    ∴∠CAD=∠CDA==67.5°,
    ∴∠BAE=90°-∠CAD=22.5°,
    ∵AD平分∠ABC,
    ∴∠ABE=∠DBE=22.5°,
    ∴∠BEA=180°-∠ABE-∠BAE=135°,
    ∵△AEF是等腰直角三角形,且∠EAF=90°,
    ∴∠AEF=∠F=45°,
    ∴∠BEA+∠AEF=180°,
    ∴B,E,F三点共线;
    (2)
    解:△ACE的面积和△ABF的面积相等.理由如下:
    过点E作EG⊥AC于点G,过点F作FH⊥BA交BA延长线于点H,
    ∵∠HAF=180°-∠BAE-∠EAF=180°-22.5°-90°=67.5°,∠CAE=67.5°,
    ∴∠HAF=∠CAE,
    ∵△AEF是等腰直角三角形,
    ∴AE=AF,
    ∴Rt△AEG≌Rt△AFH,
    ∴EG= FH,
    ∵AB=AC,
    ∴△ACE和△ABF等底等高,
    ∴△ACE的面积和△ABF的面积相等.
    【点睛】
    本题考查了等腰直角三角形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
    2、(1)见解析;(2)60°;(3)70或290
    【分析】
    (1)由可得,,,则;
    (2)利用(1)中的结论可知,,则可得的度数为,由对顶角相等可得;
    (3)结合(1)中的结论可得,注意需要讨论是钝角或是锐角时两种情况.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:(1)如图1,,
    ,,


    (2)由(1)中探究可知,,
    ,且,


    (3)如图,当为钝角时,
    由(1)中结论可知,,

    当为锐角时,如图,
    由(1)中结论可知,,
    即,
    综上,或.
    故答案为:70或290.
    【点睛】
    本题主要考查平行线的性质与判定,难度适中,观察图形,推出角之间的和差关系是解题关键.
    3、
    (1)①见详解;②结论为DE=BD+CE,证明见详解;
    (2)DE=BD+CE.证明见详解.
    【分析】
    (1)①依题意在图1作出CE、BD ,标出直角符号,垂足即可;
    ②结论为DE=BD+CE,先证∠ECA=∠BAD,再证△ECA≌△DAB(AAS),得出EA=BD,CE=AD,即可;
    (2)DE=BD+CE.根据∠BAC=α(0°< α <180°)=∠CEA=∠BDA=α,得出∠CAE=∠ABD,再证△ECA≌△DAB(AAS),得出EA=BD,CE=AD即可.
    (1)
    解:①依题意补全图1如图;
    ②结论为DE=BD+CE,
    证明:∵CE⊥l,BD⊥l,
    ∴∠CEA=∠BDA=90°,
    ∴∠ECA+∠CAE=90°,
    ∵∠BAC=90°,
    ∴∠CAE+∠BAD=90°
    ∴∠ECA=∠BAD,
    在△ECA和△DAB中,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ∴△ECA≌△DAB(AAS),
    ∴EA=BD,CE=AD,
    ∴ED=EA+AD=BD+CE;
    (2)
    DE=BD+CE.
    证明:∵∠BAC=α(0°< α <180°)=∠CEA=∠BDA=α,
    ∴∠CAE+∠BAD=180°-α,∠BAD+∠ABD=180°-α,
    ∴∠CAE=∠ABD,
    在△ECA和△DAB中,

    ∴△ECA≌△DAB(AAS),
    ∴EA=BD,CE=AD,
    ∴ED=EA+AD=BD+CE;
    故答案为:ED= BD+CE.
    【点睛】
    本题考查一线三等角,三角形内角和,平角,三角形全等判定与性质,掌握一线三等角特征,三角形内角和,平角,三角形全等判定方法与性质是解题关键.
    4、
    (1)
    (2)(两次取出的小球标号相同)
    【分析】
    (1)直接由概率公式求解即可;
    (2)画树状图,共有9种等可能的结果,两次取出小球标号相同的结果有3种,再由概率公式求解即可.
    (1)
    ∵在1,2,3三个数中,其中奇数有1,3共2个数,
    ∴随机摸取一个小球的标号是奇数,该事件的概率为
    故答案为:;
    (2)
    画树状图如下:
    由树状图可知,随机摸取一个小球后放回,再随机摸取一个小球,共有9种等可能的结果,其中两次取出的小球标号相同的结果共有3种,
    ∴(两次取出的小球标号相同).
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
    5、
    (1)见解析
    (2)
    【分析】
    (1)连接AD、OD,根据等腰三角形的性质和圆周角定理可证得∠EAD=∠ODA,根据平行线在判定与性质可证得OD⊥DE,然后根据切线的判定即可证得结论;
    (2)根据含30°角的直角三角形的性质求得OF、DF,再根据平行线分线段成比例求解即可.
    (1)
    证明:连接AD、OD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵AC是⊙O的直径,
    ∴∠ADC=90°即AD⊥BC,又AB=AC,
    ∴∠BAD=∠OAD,
    ∴∠EAD=∠ODA,
    ∴OD∥AB,
    ∵DE⊥AB,
    ∴OD⊥DE,又OD是半径,
    ∴DE是⊙O的切线;
    (2)
    解:在Rt△ODF中,OD=4,∠F=30°,
    ∴OF=2OD=8,DF= OD= ,
    ∵OD∥AB,
    ∴即,
    ∴.
    【点睛】
    本题考查等腰三角形的性质、圆周角定理、平行线的判定与性质、切线的判定、含30°角的直角三角形性质、平行线分线段成比例,综合性强,难度适中,熟练掌握相关知识的联系与运用是解答的关键.
    相关试卷

    【真题汇编】湖南省武冈市中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【真题汇编】湖南省武冈市中考数学考前摸底测评 卷(Ⅱ)(含详解),共25页。试卷主要包含了如图,有三块菜地△ACD等内容,欢迎下载使用。

    【真题汇编】湖南省武冈市中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份【真题汇编】湖南省武冈市中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共24页。

    【历年真题】湖南省怀化市中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【历年真题】湖南省怀化市中考数学考前摸底测评 卷(Ⅱ)(含详解),共18页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map