


真题解析河北省中考数学模拟真题测评 A卷(精选)
展开
这是一份真题解析河北省中考数学模拟真题测评 A卷(精选),共31页。试卷主要包含了如图,E,下列现象,抛物线的顶点为等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,O是直线AB上一点,则图中互为补角的角共有( )
A.1对B.2对C.3对D.4对
2、下列图形中,能用,,三种方法表示同一个角的是( )
A.B.
C.D.
3、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为( )
A.1B.2C.D.
4、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
①;②;③;④.
A.①②③B.①②④C.①③④D.②③④
5、下列宣传图案中,既中心对称图形又是轴对称图形的是( )
A.B.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C.D.
6、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )
A.B.
C.D.
7、下列现象:
①用两个钉子就可以把木条固定在墙上
②从A地到B地架设电线,总是尽可能沿着线段AB架设
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线
④把弯曲的公路改直,就能缩短路程
其中能用“两点之间线段最短”来解释的现象有( )
A.①④B.①③C.②④D.③④
8、抛物线的顶点为( )
A.B.C.D.
9、已知直线与双曲线相交于,两点,若点的坐标为,则点的坐标为( )
A.B.C.D.
10、如图,①,②,③,④可以判定的条件有( ).
A.①②④B.①②③C.②③④D.①②③④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、两个相似多边形的周长比是3:4,其中较小的多边形的面积为,则较大的多边形的面积为______cm2.
2、一张长方形纸片沿直线折成如图所示图案,已知,则__.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、如图,在中,BC的垂直平分线MN交AB于点D,若,,P是直线MN上的任意一点,则的最小值是______.
4、、、三个城市的位置如右图所示,城市在城市的南偏东60°方向,且,则城市在城市的______方向.
5、如图,等边边长为4,点D、E、F分别是AB、BC、AC的中点,分别以D、E、F为圆心,DE长为半径画弧,围成一个曲边三角形,则曲边三角形的周长为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在直角坐标系内,把y=x的图象向下平移1个单位得到直线AB,直线AB分别交x轴于点A,交y轴于点B,C为线段AB的中点,过点C作AB的垂线,交y轴于点D.
(1)求A,B两点的坐标;
(2)求BD的长;
(3)直接写出所有满足条件的点E;点E在坐标轴上且△ABE为等腰三角形.
2、如图, 已知在 Rt 中, , 点 为射线 上一动点, 且 , 点 关于直线 的对称点为点 , 射线 与射线 交于点 .
(1)当点 在边 上时,
① 求证: ;
②延长 与边 的延长线相交于点 , 如果 与 相似,求线段 的长;
(2)联结 , 如果 , 求 的值.
3、已知关于x的一元二次方程x2−(2m−2)x+(m2−2m)=0.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)请说明该方程实数根的个数情况;
(2)如果方程的两个实数根为x1,x2,且(x1+1)⋅(x2+1)=8,求m的值.
4、如图,在等腰中,,点是边上的中点,过点作,交的延长线于点,过点作,交于点,交于点,交于点.
求证:
(1);
(2).
5、请根据学习“一次函数”时积累的经验和方研究函数的图象和性质,并解决问题.
(1)填空:
①当x=0时, ;
②当x>0时, ;
③当x<0时, ;
(2)在平面直角坐标系中作出函数的图象;
(3)观察函数图象,写出关于这个函数的两条结论;
(4)进一步探究函数图象发现:
①函数图象与轴有 个交点,方程有 个解;
②方程有 个解;
③若关于的方程无解,则的取值范围是 .
-参考答案-
一、单选题
1、B
【分析】
根据补角定义解答.
【详解】
解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
故选:B.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
2、A
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
3、C
【分析】
取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.
【详解】
解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,
∵点A(1,0),B (3,0),
∴OA=1,OB=3,
∴OE=2,
∴ED=2×=,
∵∠ACB=90°,
∴点C在以AB为直径的圆上,
∴线段CD长的最小值为−1.
故选:C.
【点睛】
本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.
4、B
【分析】
根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
【详解】
解:∵四边形ABCD是正方形,
∴,,
在与中,
,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,①正确;
∵,
,
∴,
∴,
∴,②正确;
∵GF与BG的数量关系不清楚,
∴无法得AG与GE的数量关系,③错误;
∵,
∴,
∴,
即,④正确;
综上可得:①②④正确,
故选:B.
【点睛】
题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
5、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;
B.不是轴对称图形,也不是中心对称图形,故本选项不合题意;
C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
D.不是轴对称图形,也不是中心对称图形,故本选项不合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
6、D
【分析】
分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
【详解】
解:∵,,,
∴BC=,
过CA点作CH⊥AB于H,
∴∠ADE=∠ACB=90°,
∵,
∴CH=4.8,
∴AH=,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
当0≤x≤6.4时,如图1,
∵∠A=∠A,∠ADE=∠ACB=90°,
∴△ADE∽△ACB,
∴,即,解得:x=,
∴y=•x•=x2;
当6.4<x≤10时,如图2,
∵∠B=∠B,∠BDE=∠ACB=90°,
∴△BDE∽△BCA,
∴,
即,解得:x=,
∴y=•x•=;
故选:D.
【点睛】
本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
7、C
【分析】
直接利用直线的性质和线段的性质分别判断得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;
②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;
④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.
故选:C.
【点睛】
本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.
8、B
【分析】
根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
【详解】
解:∵y=2(x-1)2+3,
∴抛物线的顶点坐标为(1,3),
故选:B.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
9、A
【分析】
首先把点A坐标代入,求出k的值,再联立方程组求解即可
【详解】
解:把A代入,得:
∴k=4
∴
联立方程组
解得,
∴点B坐标为(-2,-2)
故选:A
【点睛】
本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握代入法.
10、A
【分析】
根据平行线的判定定理逐个排查即可.
【详解】
解:①由于∠1和∠3是同位角,则①可判定;
②由于∠2和∠3是内错角,则②可判定;
③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
④①由于∠2和∠5是同旁内角,则④可判定;
即①②④可判定.
故选A.
【点睛】
本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
二、填空题
1、64
【解析】
【分析】
根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.
【详解】
解:∵两个相似多边形的周长比是3:4,
∴两个相似多边形的相似比是3:4,
∴两个相似多边形的面积比是9:16,
∵较小多边形的面积为36cm2,
∴较大多边形的面积为64cm2,
故答案为:64.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.
2、##65度
【解析】
【分析】
根据折叠的性质可得出,代入的度数即可得出答案.
【详解】
解:由折叠可得出,
,
,
故答案为:.
【点睛】
本题考查了翻折变换的性质,熟练掌握翻折变换的性质是解题的关键.
3、8
【解析】
【分析】
如图,连接PB.利用线段的垂直平分线的性质,可知PC=PB,推出PA+PC=PA+PB≥AB,即可解决问题.
【详解】
解:如图,连接PB.
∵MN垂直平分线段BC,
∴PC=PB,
∴PA+PC=PA+PB,
∵PA+PB≥AB=BD+DA=5+3=8,
∴PA+PC≥8,
∴PA+PC的最小值为8.
故答案为:8.
【点睛】
本题考查轴对称﹣最短问题,线段的垂直平分线的性质等知识,解题的关键是学会利用两点之间线段最短解决最短问题,属于中考常考题型.
4、35°##35度
【解析】
【分析】
根据方向角的表示方法可得答案.
【详解】
解:如图,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵城市C在城市A的南偏东60°方向,
∴∠CAD=60°,
∴∠CAF=90°-60°=30°,
∵∠BAC=155°,
∴∠BAE=155°-90°-30°=35°,
即城市B在城市A的北偏西35°,
故答案为:35°.
【点睛】
本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
5、
【解析】
【分析】
证明△DEF是等边三角形,求出圆心角的度数,利用弧长公式计算即可.
【详解】
解:连接EF、DF、DE,
∵等边边长为4,点D、E、F分别是AB、BC、AC的中点,
∴是等边三角形,边长为2,
∴∠EDF=60°,
弧EF的长度为,同理可求弧DF、DE的长度为,
则曲边三角形的周长为;
故答案为:.
【点睛】
本题考查了等边三角形的性质与判定和弧长计算,中位线的性质,解题关键是熟记弧长公式,正确求出圆心角和半径.
三、解答题
1、
(1),
(2)
(3),,,,,,,
【分析】
(1)先根据一次函数图象的平移可得直线的函数解析式,再分别求出时的值、时的值即可得;
(2)设点的坐标为,从而可得,再根据线段垂直平分线的判定与性质可得,建立方程求出的值,由此即可得;
(3)分①点在轴上,②点在轴上两种情况,分别根据建立方程,· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解方程即可得.
(1)
解:由题意得:直线的函数解析式为,
当时,,解得,即,
当时,,即;
(2)
解:设点的坐标为,
,,
点为线段的中点,,
垂直平分,
,即,
解得,
则;
(3)
解:由题意,分以下两种情况:
①当点在轴上时,设点的坐标为,
则,
,
,
(Ⅰ)当时,为等腰三角形,
则,解得或,
此时点的坐标为或;
(Ⅱ)当时,为等腰三角形,
则,解得或,
此时点的坐标为或(与点重合,舍去);
(Ⅲ)当时,为等腰三角形,
则,解得,
此时点的坐标为;
②当点在轴上时,设点的坐标为,
则,
,
,
(Ⅰ)当时,为等腰三角形,
则,解得或,
此时点的坐标为或(与点重合,舍去);
(Ⅱ)当时,为等腰三角形,
则,解得或,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此时点的坐标为或;
(Ⅲ)当时,为等腰三角形,
则,解得,
此时点的坐标为;
综上,所有满足条件的点的坐标为,,,,,,,.
【点睛】
本题考查了一次函数图象的平移、线段垂直平分线的判定与性质、等腰三角形、两点之间的距离公式等知识点,较难的是题(3),正确分情况讨论是解题关键.
2、
(1)①见解析;②
(2)3或4
【分析】
(1)① 如图1,连接CE,DE,根据题意,得到CB=CE=CA,利用等腰三角形的底角与顶角的关系,三角形外角的性质,可以证明;
②连接BE,交CD于定Q,利用三角形外角的性质,确定△DCB∽△BGE,利用相似,证明△ABG是等腰三角形,△ABE是等腰三角形,△BEF是等腰直角三角形,用BE表示GE,后用相似三角形的性质求解即可;
(2)分点D在AB上和在AB的延长上,两种情形,运用等腰三角形的性质,勾股定理分别计算即可.
(1)
① 如图1,连接CE,DE,
∵点B关于直线CD的对称点为点E,
∴CE=CB,BD=DE,∠ECD=∠BCD,∠ACE=90°-2∠ECD,
∵AC=BC,
∴AC=EC,
∴∠AEC=∠ACE,
∵2∠AEC=180°-∠ACE=180°-90°+2∠ECD,
∴∠AEC=45°+∠ECD,
∵∠AEC=∠AFC +∠ECD,
∴∠AEC=45°+∠ECD=∠AFC +∠ECD,
∴∠AFC=45°;
②连接BE,交CD于定Q,
根据①得∠EAB =∠DCB,∠AFC=45°,
∵点B关于直线CD的对称点为点E,
∴∠EFC=∠BFC=45°,CF⊥BE,
∴BF⊥AG,△BEF是等腰直角三角形, BF=EF,
∵∠BEG>∠EAB,与 相似,
∴△DCB∽△BGE,
∴∠EAB =∠DCB=∠BGE,∠DBC=∠BEG=45°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴AB=BG,∠EAB+∠EBA=∠EAB+∠BGE,
∴∠EAB=∠EBA=∠BGE,
∴AE=BE=BF=EF,
∵BF⊥AG,
∴AF=FG=AE+EF=BE+EF=BE+BE=BE,
∴GE=EF+FG=BE+BE= BE,
∴=,
∵△DCB∽△BGE,
∴,
∴,
∴BD==,
(2)
过点C作CM⊥AE,垂足为M,
根据①②知,△ACE是等腰三角形,△BEF是等腰直角三角形,
∴AM=ME,BF⊥AF,
设AM=ME=x,CM=y,
∵AC=BC=5,∠ACB=90°,,
∴,AB=,xy=12,
∴
==49,
∴x+y=7或x+y=-7(舍去);
∴
==1,
∴x-y=1或x-y=-1;
∴或
∴或
∴或
∴AE=8或AE=6,
当点D在AB上时,如图3所示,AE=6,
设BF=EF=m,
∴,
∴,
解得m=1,m=-7(舍去),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴=3;
当点D在AB的延长线上时,如图4所示,AE=8,
设BF=EF=n,
∴,
∴,
解得n=1,n=7(舍去),
∴=4;
∴或.
【点睛】
本题考查了轴对称的性质,等腰直角三角形的判定性质,等腰三角形的判定和性质,完全平方公式,勾股定理,三角形相似的判定和性质,一元二次方程的解法,分类思想,熟练掌握勾股定理,三角形的相似,一元二次方程的解法是解题的关键.
3、
(1)方程有两个不相等的实数根
(2)m=3或-3
【分析】
(1)根据根的判别式先求出Δ的值,再判断即可;
(2)根据根与系数的关系得出x1+x2=2m-2,x1•x2=m2-2m,代入计算即可求出答案.
(1)
解:∵a=1,b=−(2m−2),c= m2−2m,
∴ =2-4(m2-2m)=4m2-8m+4-4m2+8m=4>0,
∴方程有两个不相等的实数根;
(2)
解:∵(x1+1)⋅(x2+1)=8,
整理得x1x2+(x1+x2)+1=8,
∵x1+x2=2m-2,x1x2=m2-2m,
∴m2-2m+2m-2+1=8,
∴m2=9,
∴m=3或m=-3.
【点睛】
本题考查了根的判别式以及根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、
(1)见解析
(2)见解析
【分析】
(1)利用已知条件证明即可;
(2)通过证明得出,再根据,得出结论.
(1)
证明:,,
,
,
,
,
,
;
(2)
证明,点是边上的中点,
,,
,
,
,
,
,
,
,
,
,
,
即.
【点睛】
本题考查了三角形相似的判定和性质以及直角三角形和等腰三角形的性质,解题的关键是掌握相似三角形的判定定理进行证明.
5、(1)2;-x+2,x+2;(2)见解析;(3)函数图象关于y轴对称;当x=0时,y有最大值2;(4)①2 2;②1;③.
【分析】
(1)利用绝对值的意义,分别代入计算,即可得到答案;
(2)结合(1)的结论,画出分段函数的图像即可;
(3)结合函数图像,归纳出函数的性质即可;
(4)结合函数图像,分别进行计算,即可得到答案;
【详解】
解:(1)①当x=0时,;
②当x>0时,;
③当x<0时,;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:2;x+2;x+2;
(2)函数y=|x|+2的图象,如图所示:
(3)函数图象关于y轴对称;
当x=0时,y有最大值2.(答案不唯一)
(4)①函数图象与轴有2个交点,方程有2个解;
②方程有1个解;
③若关于的方程无解,则的取值范围是.
故答案为:2;2;1;.
【点睛】
本题考查了一次函数的图像和性质,绝对值的意义,解题的关键是熟练掌握题意,正确的画出图像.
相关试卷
这是一份【高频真题解析】2022年河北省中考数学模拟真题测评 A卷(精选),共25页。试卷主要包含了方程的解为,把分式化简的正确结果为,一元二次方程的一次项的系数是等内容,欢迎下载使用。
这是一份【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选),共21页。试卷主要包含了下列各式,下列说法正确的是.,不等式+1<的负整数解有,计算12a2b4•÷的结果等于,分式方程有增根,则m为等内容,欢迎下载使用。
这是一份【真题汇编】中考数学模拟专项测评 A卷(精选),共20页。试卷主要包含了下列式中,与是同类二次根式的是等内容,欢迎下载使用。
