真题解析湖南省衡阳市中考数学第三次模拟试题(含答案及解析)
展开
这是一份真题解析湖南省衡阳市中考数学第三次模拟试题(含答案及解析),共29页。试卷主要包含了如图,,下列方程变形不正确的是,已知,则的补角等于等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.米B.10米C.米D.12米
2、已知反比例函数经过平移后可以得到函数,关于新函数,下列结论正确的是( )
A.当时,y随x的增大而增大B.该函数的图象与y轴有交点
C.该函数图象与x轴的交点为(1,0)D.当时,y的取值范围是
3、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )
A.16B.19C.24D.36
4、如图,、是的切线,、是切点,点在上,且,则等于( )
A.54°B.58°C.64°D.68°
5、下列方程变形不正确的是( )
A.变形得:
B.方程变形得:
C.变形得:
D.变形得:
6、若和是同类项,且它们的和为0,则mn的值是( )
A.-4B.-2C.2D.4
7、已知,则的补角等于( )
A.B.C.D.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
8、如图,直线AB与CD相交于点O,若,则等于( )
A.40°B.60°C.70°D.80°
9、有理数a,b在数轴上对应的位置如图所示,则下列结论正确的是( ).
A.B.C.D.
10、若把边长为的等边三角形按相似比进行缩小,得到的等边三角形的边长为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,一架梯子AB斜靠在左墙时,梯子顶端B距地面2.4m,保持梯子底端A不动,将梯子斜靠在右墙时,梯子顶端C距地面2m,梯子底端A到右墙角E的距离比到左墙角D的距离多0.8m,则梯子的长度为_____m.
2、已知抛物线与轴相交于,两点.若线段的长不小于2,则代数式的最小值为_______.
3、如图,,D为外一点,且交的延长线于E点,若,则_______.
4、计算:__.
5、如图,正方形 边长为 ,则 _____________
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知△ABC.
(1)请用尺规完成以下作图:延长线段BC,并在线段BC的延长线上截取CD=AC,连接AD;在BD下方,作∠DBE=∠ADB;
(2)若AB=AC,利用(1)完成的图形,猜想∠ABE与∠DBE存在的数量关系,并证明你的结论;
(3)若AB=AC=3,BC=4,利用(1)完成的图形,计算AD的长度.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、小欣在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质.其研究过程如下:
(1)绘制函数图象.
①列表:下表是x与y的几组对应值,其中______;
②描点:根据表中的数值描点,请补充描出点;
③连线:用平滑的曲线顺次连接各点,请把图象补充完整.
(2)探究函数性质.
判断下列说法是否正确(正确的填“√”,错误的填“×”).
①函数值y随x的增大而减小; ( )
②函数图象关于原点对称;( )
③函数图象与直线没有交点.( )
(3)请你根据图象再写一条此函数的性质:______.
3、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).
(1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;
(2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;
(3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.
4、解方程:.
5、(1)计算:;
(2)已知二次函数,当时,,当时,.求该二次函数的解析式.
-参考答案-
一、单选题
1、B
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为-4,
∵水面AB宽为20米,
∴A(-10,-4),B(10,-4),
将A代入y=ax2,
-4=100a,
∴,
∴,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为-1,
∴
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
2、C
【分析】
函数的图象是由函数的图象向下平移1个单位长度后得到的,根据两个函数的图像,可排除A,B,C选项,将y=0代入函数可得到函数与x轴交点坐标为(1,0),故C选项正确.
【详解】
解:函数与函数的图象如下图所示:
函数的图象是由函数的图象向下平移1个单位长度后得到的,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A、由图象可知函数,当时,y随x的增大而减小,选项说法错误,与题意不符;
B、函数的图象是由函数的图象向下平移一个单位后得到的,所以函数与y轴无交点,选项说法错误,与题意不符;
C、将y=0代入函数中得,,解得,故函数与x轴交点坐标为(1,0),选项说法正确,与题意相符;
D、当时, ,有图像可知当时,y的取值范围是,故选项说法错误,与题意不符;
故选:C.
【点睛】
本题考查反比例函数的图象,以及函数图象的平移,函数与数轴的交点求法,能够画出图象,并掌握数形结合的方法是解决本题的关键.
3、C
【分析】
分别求出各视图的面积,故可求出表面积.
【详解】
由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5
故表面积为2×(4+3+5)=24
故选C.
【点睛】
此题主要考查三视图的求解与表面积。解题的关键是熟知三视图的性质特点.
4、C
【分析】
连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
【详解】
解:连接,,如下图:
∴
∵PA、PB是的切线,A、B是切点
∴
∴由四边形的内角和可得:
故选C.
【点睛】
此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
5、D
【分析】
根据等式的性质解答.
【详解】
解:A. 变形得:,故该项不符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
B. 方程变形得:,故该项不符合题意;
C. 变形得:,故该项不符合题意;
D. 变形得:,故该项符合题意;
故选:D.
【点睛】
此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键.
6、B
【分析】
根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
【详解】
解:∵和是同类项,且它们的和为0,
∴2+m=3,n-1=-3,
解得m=1,n=-2,
∴mn=-2,
故选:B.
【点睛】
此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
7、C
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
8、A
【分析】
根据对顶角的性质,可得∠1的度数.
【详解】
解:由对顶角相等,得
∠1=∠2,又∠1+∠2=80°,
∴∠1=40°.
故选:A.
【点睛】
本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.
9、D
【分析】
先根据数轴可得,再根据有理数的减法法则、绝对值性质逐项判断即可得.
【详解】
解:由数轴的性质得:.
A、,则此项错误;
B、,则此项错误;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C、,则此项错误;
D、,则此项正确;
故选:D.
【点睛】
本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.
10、A
【分析】
直接根据位似图形的性质求解即可
【详解】
解:∵把边长为的等边三角形按相似比进行缩小,
∴得到的新等边三角形的边长为:
故选:A
【点睛】
本题主要考查了根据位似图形的性质求边长,熟练掌握位似图形的性质是解答本题的关键.
二、填空题
1、##
【解析】
【分析】
设,则 结合再利用勾股定理建立方程再解方程求解 再利用勾股定理求解梯子的长即可.
【详解】
解:设,则 而
由勾股定理可得:
整理得:
解得:
所以梯子的长度为m.
故答案为:
【点睛】
本题考查的是勾股定理的应用,熟练的利用勾股定理建立方程是解本题的关键.
2、-1
【解析】
【分析】
将抛物线解析式配方,求出顶点坐标为(1,-2)在第四象限,再根据抛物线与x轴有两个交点可得,设为A,B两点的横坐标,然后根据已知,求出的取值范围,再设,配方代入求解即可.
【详解】
解:
=
=
∴抛物线顶点坐标为(1,-2),在第四象限,
又抛物线与轴相交于A,两点.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴抛物线开口向上,即
设为A,B两点的横坐标,
∴
∵线段的长不小于2,
∴
∴
∴
∴
∴
解得,
设
当时,有最小值,最小值为:
故答案为:-1
【点睛】
本题主要考查发二次函数的图象与性质,熟记完全平方公式和根与系数的关系是解题的关键.
3、2
【解析】
【分析】
过点D作DM⊥CB于M,证出∠DAE=∠DBM,判定△ADE≌△BDM,得到DM=DE=3,证明四边形CEDM是矩形,得到CE=DM=3,由AE=1,求出BC=AC=2.
【详解】
解:∵DE⊥AC,
∴∠E=∠C=90°,
∴,
过点D作DM⊥CB于M,则∠M=90°=∠E,
∵AD=BD,
∴∠BAD=∠ABD,
∵AC=BC,
∴∠CAB=∠CBA,
∴∠DAE=∠DBM,
∴△ADE≌△BDM,
∴DM=DE=3,
∵∠E=∠C=∠M =90°,
∴四边形CEDM是矩形,
∴CE=DM=3,
∵AE=1,
∴BC=AC=2,
故答案为:2.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE≌△BDM是解题的关键.
4、
【解析】
【分析】
有理数的混合运算,此题中先算乘方,再算减法即可.
【详解】
,
故答案为:.
【点睛】
此题考查有理数的混合运算,熟练掌握有理数混合运算顺序是解题关键.
5、##
【解析】
【分析】
根据正方形的性质可得,过E作EG⊥BC于G,证明三角形EGC是等腰直角三角形,再根据直角三角形BEG利用勾股定理列方程即可.
【详解】
过E作EG⊥BC于G
∵正方形 边长为2
∴,
∵
∴
∴三角形EGC是等腰直角三角形
∴,
在Rt△BEG中,
∴
解得:
∴
∴
【点睛】
本题考查正方形的性质及勾股定理,解题的关键是证明三角形EGC是等腰直角三角形,最终根据勾股定理列方程计算即可.
三、解答题
1、
(1)作图见解析
(2),证明见解析
(3)
【分析】
(1)根据作一条线段等于已知线段,作一个角等于已知角的步骤,逐步作图即可;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)根据等边对等角证明结合三角形的外角的性质证明:再结合已知条件可得结论;
(3)如图,过A作于K,理由等腰三角形的性质与勾股定理分别求解 再可以勾股定理求解即可.
(1)
解:如图,①延长BC,在射线BC上截取 连接AD,
②以D为圆心,任意长为半径画弧,交于
③以B为圆心,DP为半径画弧,交BC于H,
④以H为圆心,PQ为半径画弧,与前弧交于点E,
再作射线BE即可.
(2)
解:;理由如下;
(3)
解:如图,过A作于K,
【点睛】
本题考查的是作一条线段等于已知线段,作一个角等于已知角,等腰三角形的性质,勾股定理的应用,三角形的外角的性质,熟练的运用等边对等角是解本题的关键.
2、
(1)①1;②描点见解析;③连线见解析
(2)①×;②×;③√
(3)当时,y随x的增大而减小
【分析】
(1)①将x=0代入即得m的值;②描出(0,1)即可;③把描出的点用平滑的曲线顺次连接即可;
(2)根据图像数形结合即可判断.
(3)根据图像再写一条符合反比例函数特点的性质即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
①解:将代入解析式中解得;
②描点如图所示③补充图像如图所示:
(2)
根据函数图像可得:
①每一个分支上的函数值y随x的增大而减小,故①错误,应为×;
②图像关于(-1,0)对称,故②错误,应为×;
③x=-1时,无意义,函数图像与直线x=-1没有交点,应为√.
(3)
当时,y随x的增大而减小.
【点睛】
本题考查函数的图形及性质,解题的关键是熟练掌握研究函数的方法用列表、描点、连线作出图像,再数形结合研究函数性质.
3、
(1)点E,点F;
(2)()或();
(3)b的取值范围1<b<2或2<b<3.
【分析】
(1)根据以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,△ABE为直角三角形,且AE大于AB;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,BF大于AB即可;
(2)根据点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,得出△AOB为等腰直角三角形,可得∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,利用待定系数法求出AS解析式为,联立方程组,以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,∠OBR=90°-∠ABO=45°,可得△OBR为等腰直角三角形,OR=OB=1,点R(0,-1),利用平移的性质可求BR解析式为,联立方程组,解方程组即可;
(3)过点A与AB垂直的直线交直线y=2x+2于U,把△AOB绕点A顺时针旋转90°,得△AO′U,AO′=AO=1,O′U=OB=b,根据点U(-1,b-1)在直线上,得出方程,求出b的值,当过点A的直线与直线平行时没有 “关联点”,OB=OW=b=2,得出在1<b<2时,直线上存在两个AB的“关联点”,当b>2时,根据旋转性质将△AOB绕点A逆时针旋转90°得到△AO′U,得出AO′=AO=1,O′U=OB=b,根据点U(1,1+b)在直线上,列方程,得出即可.
(1)
解:点D与AB纵坐标相同,在直线AB上,不能构成直角三角形,
以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,
∴△ABE为直角三角形,且AE大于AB;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,AF=4>AB=2,
∴点E与点F是AB关联点,
点G不在A、B两点垂直的直线上,故不能构成直角三角形,
故答案为点E,点F;
(2)
解:∵点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,
∴△AOB为等腰直角三角形,AB=
∴∠ABO=∠BAO=45°,
以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,
∴∠OAS=90°-∠BAO=45°,
∴△AOS为等腰直角三角形,
∴OS=OA=1,点S(1,0),
设AS解析式为代入坐标得:
,
解得,
AS解析式为,
∴,
解得,
点P(),
AP=,AP>AB
以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,
∴∠OBR=90°-∠ABO=45°,
∴△OBR为等腰直角三角形,
∴OR=OB=1,点R(0,-1),
过点R与AS平行的直线为AS直线向下平移2个单位,
则BR解析式为,
∴,
解得,
点P1(),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
AP1=>,
∴点P为线段AB的关联点,点P的坐标为()或();
(3)
解:过点A与AB垂直的直线交直线y=2x+2于U,
把△AOB绕点A顺时针旋转90°,得△AO′U,
∴AO′=AO=1,O′U=OB=b,
点U(-1,b-1)在直线上,
∴
∴,
∴当b>1时存在两个“关联点”,
当b<1时,UA<AB,不满足定义,没有两个“关联点”
当过点A的直线与直线平行时没有 “关联点”
与x轴交点X(-1,0),与y轴交点W(0,2)
∵OA=OX=1,∠XOW=∠AOB=90°,AB⊥XW,
∴△OXW顺时针旋转90°,得到△OAB,
∴OB=OW=2,
∴在1<b<2时,直线上存在两个AB的“关联点”,
当b>2时,将△AOB绕点A逆时针旋转90°得到△AO′U,
∴AO′=AO=1,O′U=OB=b,
点U(1,1+b)在直线上,
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴解得
∴当2<b<3时, 直线上存在两个AB的“关联点”,
当b>3时,UA<AB,不满足定义,没有两个“关联点”
综合得,b的取值范围1<b<2或2<b<3.
【点睛】
本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.
4、
【分析】
去分母,移项合并同类项,系数化为1即可求解.
【详解】
.
去分母得:.
去括号得:
移项合并同类项得:.
系数化为1得:.
【点睛】
本题考查一元一次方程的解法,先去分母、移项合并、化系数为1.属于基础题.
5、(1);(2)
【分析】
(2)分别把各特殊角的三角函数值代入进行计算即可;
(2)把x,y的值分别代入得关于a,b为未知数的方程组,求解方程组即可.
【详解】
解:(1)
;
(2)把,,,分别代入得
,
解得,
∴.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题主要考查了特殊角三角函数的混合运算以及运用待定系数法示二次函数解析式,熟练掌握相关知识是解答本题的关键.
x
…
0
1
2
…
y
…
3
2
m
…
相关试卷
这是一份【难点解析】湖南省衡阳市中考数学五年真题汇总 卷(Ⅲ)(含答案解析),共33页。试卷主要包含了如图个三角形.,下列各式中,不是代数式的是等内容,欢迎下载使用。
这是一份【历年真题】湖南省衡阳市中考数学一模试题(含答案及解析),共23页。试卷主要包含了有理数 m,下列语句中,不正确的是,利用如图①所示的长为a,一元二次方程的根为等内容,欢迎下载使用。
这是一份2023年湖南省衡阳市中考数学真题(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。