真题解析湖南省邵阳市中考数学三年真题模拟 卷(Ⅱ)(精选)
展开
这是一份真题解析湖南省邵阳市中考数学三年真题模拟 卷(Ⅱ)(精选),共27页。试卷主要包含了利用如图①所示的长为a,下列图像中表示是的函数的有几个等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )
A.B.C.D.
2、如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
A.B.C.D.
3、下列图形是全等图形的是( )
A.B.C.D.
4、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
A.abB.a+bC.abD.a
5、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为( )
A.15°B.10°C.20°D.25°
6、已知直线与双曲线相交于,两点,若点的坐标为,则点的坐标为( )
A.B.C.D.
7、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.
C.D.
8、如图是由一些完全相同的小立方块搭成的几何体从左面、上面看到的形状图.搭成这个几何体所用的小立方块的个数至少是( )
A.3个B.4个C.5个D.6个
9、下列图像中表示是的函数的有几个( )
A.1个B.2个C.3个D.4个
10、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )
A.B.
C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系xOy中,P为函数图象上一点,过点P分别作x轴、y轴的垂线,垂足分别为M,N.若矩形PMON的面积为3,则m的值为______.
2、如图,过的重心G作分别交边AC、BC于点E、D,联结AD,如果AD平分,,那么______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.
4、勾股定理有着悠久的历史,它曾引起很多人的兴趣,1955年希腊发行了以勾股定理为背景的邮票.如图,在中,,,.分别以AB,AC,BC为边向外作正方形ABMN,正方形ACKL,正方形BCDE,并按如图所示作长方形HFPQ,延长BC交PQ于G.则长方形CDPG的面积为______.
5、已知:直线与直线的图象交点如图所示,则方程组的解为______.
三、解答题(5小题,每小题10分,共计50分)
1、计算:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2.
2、如图,在平面直角坐标系中,在第二象限,且,,.
(1)作出关于轴对称的,并写出,的坐标;
(2)在轴上求作一点,使得最小,并求出最小值及点坐标.
3、如图,在平面直角坐标系中,抛物线与轴交于两点与轴交于点C,点M是抛物线的顶点,抛物线的对称轴与BC交于点D,与轴交于点E.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)求抛物线的对称轴及B点的坐标
(2)如果,求抛物线的表达式;
(3)在(2)的条件下,已知点F是该抛物线对称轴上一点,且在线段的下方,,求点的坐标
4、已知的负的平方根是,的立方根是3,求的四次方根.
5、先把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来.
﹣2,-(﹣4),0,+(﹣1),1,﹣|﹣3|
-参考答案-
一、单选题
1、D
【分析】
根据勾股定理可将AB的长求出,点B所经过的路程是以点A为圆心,以AB的长为半径,圆心角为90°的扇形.
【详解】
解:在Rt△ABC中,AB=,
∴点B所走过的路径长为=
故选D.
【点睛】
本题主要考查了求弧长,勾股定理,解题关键是将点B所走的路程转化为求弧长,使问题简化.
2、C
【分析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
【详解】
解:连接AD,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴,解得AD=10,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=CM+MD+CD=AD+.
故选:C.
【点睛】
本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
3、D
【详解】
解:A、不是全等图形,故本选项不符合题意;
B、不是全等图形,故本选项不符合题意;
C、不是全等图形,故本选项不符合题意;
D、全等图形,故本选项符合题意;
故选:D
【点睛】
本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.
4、B
【分析】
先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.
【详解】
解:∵△ABC、△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵AF=CF,
∴∠ABD=∠CBD=∠ACE=30°,
∴点E在射线CE上运动(∠ACE=30°),
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
∵CA=CM,∠ACM=60°,
∴△ACM是等边三角形,
∴△ACM≌△ACB,
∴FM=FB=b,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
故选:B.
【点睛】
此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
5、A
【分析】
利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.
【详解】
∵DE∥AF,
∴∠CDE=∠CFA=45°,
∵∠CFA=∠B+∠BAF,∠B=30°,
∴∠BAF=15°,
故选A.
【点睛】
本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.
6、A
【分析】
首先把点A坐标代入,求出k的值,再联立方程组求解即可
【详解】
解:把A代入,得:
∴k=4
∴
联立方程组
解得,
∴点B坐标为(-2,-2)
故选:A
【点睛】
本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握代入法.
7、A
【分析】
整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.
【详解】
∵大正方形边长为:,面积为:;
1个小正方形的面积加上4个矩形的面积和为:;
∴.
故选:A.
【点睛】
此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
8、C
【分析】
根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,从而得到上层至少1块,底层2行至少有3+1=4块,即可求解.
【详解】
解:根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,
所以上层至少1块,底层2行至少有3+1=4块,
所以搭成这个几何体所用的小立方块的个数至少是1+4=5块.
故选:C
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从左面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
9、A
【分析】
函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
【详解】
解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
故第2个图符合题意,其它均不符合,
故选:A.
【点睛】
本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
10、D
【分析】
分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
【详解】
解:∵,,,
∴BC=,
过CA点作CH⊥AB于H,
∴∠ADE=∠ACB=90°,
∵,
∴CH=4.8,
∴AH=,
当0≤x≤6.4时,如图1,
∵∠A=∠A,∠ADE=∠ACB=90°,
∴△ADE∽△ACB,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,即,解得:x=,
∴y=•x•=x2;
当6.4<x≤10时,如图2,
∵∠B=∠B,∠BDE=∠ACB=90°,
∴△BDE∽△BCA,
∴,
即,解得:x=,
∴y=•x•=;
故选:D.
【点睛】
本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
二、填空题
1、3
【解析】
【分析】
根据反比例函数的解析式是,设点,根据已知得出,即,求出即可.
【详解】
解:设反比例函数的解析式是,
设点是反比例函数图象上一点,
矩形的面积为3,
,
即,
故答案为:3.
【点睛】
本题考查了矩形的面积和反比例函数的有关内容的应用,解题的关键是主要考查学生的理解能力和运用知识点解题的能力.
2、8
【解析】
【分析】
由重心的性质可以证明,再由AD平分和可得DE=AE,最后根据得到即可求出EC.
【详解】
连接CG并延长与AB交于H,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵G是的重心
∴
∴
∵
∴,,
∴
∴
∵AD平分
∴
∴
∴
∴,
∴
【点睛】
本题考查三角形的重心的性质、相似三角形的性质与判定、平行线分线段成比例,解题的关键是利用好平行线得到多个结论.
3、49
【解析】
【分析】
延长FE交AB于点M,则,,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.
【详解】
如图,延长FE交AB于点M,则,,
∵四边形ABCD是正方形,
∴,
∴是等腰直角三角形,
∴,
在中,,
∴,
∴.
故答案为:49.
【点睛】
本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.
4、12
【解析】
【分析】
证明Rt△AIC≌Rt△CGK,得到AI=CG,利用勾股定理结合面积法求得CG=,进一步计算即可求解.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:过点A作AI⊥BC于点I,
∵正方形ACKL,∴∠ACK=90°,AC=CK,
∴∠ACI+∠KCG=90°,∠ACI+∠CAI=90°,
∴Rt△AIC≌Rt△CGK,
∴AI=CG,
∵,,.
∴BC=5,
∵,
∴AI=,则CG=,
∵正方形BCDE,
∴CD=BC=5,
∴长方形CDPG的面积为5.
故答案为:12.
.
【点睛】
本题考查了全等三角形的判定和性质,勾股定理,熟记各图形的性质并准确识图是解题的关键.
5、
【解析】
【分析】
根据函数图象与二元一次方程组的关系,求方程组的解,就是求两方程所表示的两一次函数图象交点的坐标,从而得出答案.
【详解】
解:∵函数y=x-b与函数y=mx+6的交点坐标是(2,3),
∴方程组的解为.
故答案为.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题主要考查了一次函数与二元一次方程组的关系,比较简单,熟悉交点坐标就是方程组的解是解题的关键.
三、解答题
1、
【分析】
根据整式的乘法公式及运算法则化简,合并即可求解.
【详解】
(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2
=a2-4b2-a2+4ab-4b2+8b2
=4ab.
【点睛】
此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及运算公式.
2、
(1)见解析,,
(2)见解析,,
【分析】
(1)由题意依据作轴对称图形的方法作出关于轴对称的,进而即可得出,的坐标;
(2)根据题意作关于轴的对称点,连接两点与轴的交点即为点,进而设直线的解析式为并结合勾股定理进行求解.
(1)
解:如图所示,即为所求.,
(2)
解:如图点即为所求.点关于轴对称点.
设直线的解析式为.
将,代入得
,,
∴直线
当时,.,,
最小.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查画轴对称图形以及勾股定理,熟练掌握并利用轴对称的性质解决线段和的最小值是解题的关键.
3、
(1)对称轴是,B(4,0)
(2)y=
(3)F( ,-5)
【分析】
(1)根据二次函数抛物线的性质,可求出对称轴,即可得B点的坐标;
(2)二次函数的y轴平行于对称轴,根据平行线分线段成比例用含a的代数式表示DE的长,MD= ,可表示M的纵坐标,然后把M的横坐标代入y=ax2−3ax−4a,可得到关于a的方程,求出a的值,即可得答案;
(3)先证△AOC∽△COB,得∠BCO=∠CAO,再求出∠CAO=∠CFB,得△AGC∽△FGB,根据相似三角形对于高的比等于相似比,可得答案.
(1)
解:∵二次函数y=ax2−3ax−4a,
∴对称轴是 ,
∵A(−1,0),
∵1+1.5=2.5,
∴1.5+2.5=4,
∴B(4,0);
(2)
∵二次函数y=ax2−3ax−4a,C在y轴上,
∴C的横坐标是0,纵坐标是−4a,
∵y轴平行于对称轴,
∴ ,
∴,
∵ ,
∵MD=,
∵M的纵坐标是+
∵M的横坐标是对称轴x,
∴ ,
∴+=,
解这个方程组得: ,
∴y=ax2−3ax−4a= x2-3×()x-4×()=;
(3)
假设F点在如图所示的位置上,连接AC、CF、BF,CF与AB相交于点G,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由(2)可知:AO=1,CO=2,BO=4,
∴ ,
∴,
∵∠AOC=∠COB=90°,
∴△AOC∽△COB,
∴∠BCO=∠CAO,
∵∠CFB=∠BCO,
∴∠CAO=∠CFB,
∵∠AGC=∠FGB,
∴△AGC∽△FGB,
∴ ,
设EF=x,
∵BF2=BE2+EF2= ,AC2=22+12=5,CO2=22=4,
∴= ,
解这个方程组得:x1=5,x2=-5,
∵点F在线段BC的下方,
∴x1=5(舍去),
∴F(,-5).
【点睛】
本题考查了二次函数的性质、平行线分线段成比例、一元一次方程的解法、一元二次方程方程的解法、相似三角形的判定与性质,做题的关键是相似三角形的判定与性质的灵活运用.
4、
【分析】
根据的负的平方根是,的立方根是3,可以求得、的值,从而可以求得所求式子的四次方根.
【详解】
解:的负的平方根是,的立方根是3,
,
解得,,
,
的四次方根是,
即的四次方根是.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查平方根、立方根,以及二元一次方程组的解法,解答本题的关键是明确题意,求出、的值.
5、数轴见解析,-|-3|<-2<+(-1)<0<1<-(-4)
【分析】
先根据相反数,绝对值进行计算,再在数轴上表示出各个数,再比较大小即可.
【详解】
解:-(-4)=4,+(-1)=-1,-|-3|=-3,
-|-3|<-2<+(-1)<0<1<-(-4).
【点睛】
本题考查了数轴,有理数的大小比较,绝对值和相反数等知识点,能正确在数轴上表示出各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.
相关试卷
这是一份真题解析湖南省长沙市中考数学模拟真题测评 A卷(精选),共23页。试卷主要包含了下列式子中,与是同类项的是,如图,在中,,,,则的度数为等内容,欢迎下载使用。
这是一份【真题汇编】湖南省新化县中考数学真题模拟测评 (A)卷(精选),共30页。
这是一份【真题汇编】湖南省新化县中考数学模拟真题 (B)卷(精选),共27页。试卷主要包含了和按如图所示的位置摆放,顶点B,下列函数中,随的增大而减小的是,一元二次方程的根为等内容,欢迎下载使用。