![真题解析湖南省新化县中考数学第一次模拟试题(含答案及解析)第1页](http://img-preview.51jiaoxi.com/2/3/15476063/0-1710151236718/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![真题解析湖南省新化县中考数学第一次模拟试题(含答案及解析)第2页](http://img-preview.51jiaoxi.com/2/3/15476063/0-1710151236777/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![真题解析湖南省新化县中考数学第一次模拟试题(含答案及解析)第3页](http://img-preview.51jiaoxi.com/2/3/15476063/0-1710151236791/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
还剩22页未读,
继续阅读
真题解析湖南省新化县中考数学第一次模拟试题(含答案及解析)
展开这是一份真题解析湖南省新化县中考数学第一次模拟试题(含答案及解析),共25页。试卷主要包含了下列语句中,不正确的是,下列图形是全等图形的是,下列函数中,随的增大而减小的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下面的图形中,是轴对称图形但不是中心对称图形的是( )
A.B.C.D.
2、下面四个立体图形的展开图中,是圆锥展开图的是( ).
A.B.C.D.
3、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
A.B.C.D.
4、下列语句中,不正确的是( )
A.0是单项式B.多项式的次数是4
C.的系数是D.的系数和次数都是1
5、2021年10月16日,中国神舟十三号载人飞船的长征二号F遥十三运载火箭在中国酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭成功分离,进入预定轨道,截至2021年11月2日,“神舟十三号”载人飞船已在轨飞行18天,距离地球约63800000千米,用科学记数法表示63800000为( )
A.B.C.D.
6、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )
A.1B.2020C.2021D.2022
7、下列图形是全等图形的是( )
A.B.C.D.
8、下列函数中,随的增大而减小的是( )
A.B.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C.D.
9、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
A.B.y随x的增大而增大
C.当时,D.关于x的方程的解是
10、如图是由一些完全相同的小立方块搭成的几何体从左面、上面看到的形状图.搭成这个几何体所用的小立方块的个数至少是( )
A.3个B.4个C.5个D.6个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图中给出了某城市连续5天中,每一天的最高气温和最低气温(单位:),那么最大温差是________.
2、《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作.其中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:有若干人共同购买某种物品,如果每人出8钱,则多3钱;如果每人出7钱,则少4钱,问共有多少人?物品的价格是多少钱?用一元一次方程的知识解答上述问题设共有x人,依题意,可列方程为______.
3、已知3x﹣3•9x=272,则x的值是 ___.
4、如图,Rt △ABC,∠B=90∘,∠BAC=72°,过C作CF∥AB,联结 AF 与 BC 相交于点 G,若 GF=2AC,则 ∠BAG=_____________°.
5、某树主干长出x根枝干,每个枝干又长出x根小分支,若主干、枝干和小分支总数共133根,则主干长出枝干的根数x为______.
三、解答题(5小题,每小题10分,共计50分)
1、(1)如图1,四边形ABCD是矩形,以对角线AC为直角边作等腰直角三角形EAC,且.请证明:;
(2)图2,在矩形ABCD中,,,点P是AD上一点,且,连接PC,以PC为直角边作等腰直角三角形EPC,,设,,请求出y与x的函数关系式;
(3)在(2)的条件下,连接BE,若点P在线段AD上运动,在点P的运动过程中,当是等腰三角形时,求AP的长.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、在平面直角坐标系xOy中,已知点A(1,0)和点B(5,0).对于线段AB和直线AB外的一点C,给出如下定义:点C到线段AB两个端点的连线所构成的夹角∠ACB叫做线段AB关于点C的可视角,其中点C叫做线段AB的可视点.
(1)在点D(-2,2)、E(1,4)、F(3,-2)中,使得线段AB的可视角为45°的可视点是 ;
(2)⊙P为经过A,B两点的圆,点M是⊙P上线段AB的一个可视点.
① 当AB为⊙P的直径时,线段AB的可视角∠AMB为 度;
② 当⊙P的半径为4时,线段AB的可视角∠AMB为 度;
(3)已知点N为y轴上的一个动点,当线段AB的可视角∠ANB最大时,求点N的坐标.
3、如图,在中,,.
(1)尺规作图:
①作边的垂直平分线交于点,交于点;
②连接,作的平分线交于点;(要求:保留作图痕迹,不写作法)
(2)在(1)所作的图中;求的度数.
解:∵垂直平分线段,
∴,(_________)(填推理依据)
∴,(__________)(填推理依据)
∵,∴,
∵,
∴__________,
∴__________,
∵平分,
∴__________.
4、如图,ABCD,,,试说明:BCDE.请补充说明过程,并在括号内填上相应的理由.
解:∵ABCD(已知),
,
又(已知),
,
,
,
BCDE .
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、某商品每天可售出300件,每件获利2元.为了尽快减少库存,店主决定降价销售.根据经验可知,如果每件降价0.1元,平均每天可多售出20件,店主要想平均每天获利500元,每件商品应降价多少元?
-参考答案-
一、单选题
1、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;
B、不是轴对称图形,是中心对称图形,故此选项不符合题意;
C、不是轴对称图形,是中心对称图形,故此选项不符合题意;
D、是轴对称图形,不是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
2、B
【分析】
由棱柱,圆锥,圆柱的展开图的特点,特别是底面与侧面的特点,逐一分析即可.
【详解】
解:选项A是四棱柱的展开图,故A不符合题意;
选项B是圆锥的展开图,故B符合题意;
选项C是三棱柱的展开图,故C不符合题意;
选项D是圆柱的展开图,故D不符合题意;
故选B
【点睛】
本题考查的是简单立体图形的展开图,熟悉常见的基本的立体图形及其展开图是解本题的关键.
3、B
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
4、D
【分析】
分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:A、0是单项式,正确,不符合题意;
B、多项式的次数是4,正确,不符合题意;
C、的系数是,正确,不符合题意;
D、的系数是-1,次数是1,错误,符合题意,
故选:D.
【点睛】
本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.
5、B
【分析】
科学记数法的表示形式为的形式,其中,n为整数;确定n的值时,要把原数变成a,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数的绝对值大于10时,n为正整数,当原数的绝对值小于1时,n为负整数.
【详解】
故选:B
【点睛】
本题考查了科学记数法的表示方法;科学记数法的表示形式为的形式,其中,n为整数,熟练地掌握科学记数法的表示方法是解本题的关键.
6、D
【分析】
根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.
【详解】
解:如图,
由题意得:SA=1,
由勾股定理得:SB+SC=1,
则 “生长”了1次后形成的图形中所有的正方形的面积和为2,
同理可得:
“生长”了2次后形成的图形中所有的正方形面积和为3,
“生长”了3次后形成的图形中所有正方形的面积和为4,
……
“生长”了2021次后形成的图形中所有的正方形的面积和是2022,
故选:D
【点睛】
本题考查了勾股数规律问题,找到规律是解题的关键.
7、D
【详解】
解:A、不是全等图形,故本选项不符合题意;
B、不是全等图形,故本选项不符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C、不是全等图形,故本选项不符合题意;
D、全等图形,故本选项符合题意;
故选:D
【点睛】
本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.
8、C
【分析】
根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
【详解】
解:A.在中,y随x的增大而增大,故选项A不符合题意;
B.在中,y随x的增大与增大,不合题意;
C.在中,当x>0时,y随x的增大而减小,符合题意;
D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
故选:C.
【点睛】
本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
9、D
【分析】
根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
【详解】
A.该一次函数经过一、二、四象限
, y随x的增大而减小,
故A,B不正确;
C. 如图,设一次函数与轴交于点
则当时,,故C不正确
D. 将点坐标代入解析式,得
关于x的方程的解是
故D选项正确
故选D
【点睛】
本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
10、C
【分析】
根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,从而得到上层至少1块,底层2行至少有3+1=4块,即可求解.
【详解】
解:根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
所以上层至少1块,底层2行至少有3+1=4块,
所以搭成这个几何体所用的小立方块的个数至少是1+4=5块.
故选:C
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从左面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
二、填空题
1、15
【解析】
【分析】
通过表格即可求得最高和最低气温,12月3日的温差最大,最大温差为10-(-5)=15℃;
【详解】
解:12月1日的温差:
12月2日的温差:
12月3日的温差:
12月4日的温差:
12月5日的温差:
,
最大温差是15,
故答案为:15.
【点睛】
此题考查了正数与负数以及有理数的减法,熟练掌握运算法则是解本题的关键.
2、8x-3=7x+4
【解析】
【分析】
根据物品的价格相等列方程.
【详解】
解:设共有x人,依题意,可列方程为8x-3=7x+4,
故答案为:8x-3=7x+4.
【点睛】
此题考查了古代问题的一元一次方程,正确理解题意是解题的关键.
3、3
【解析】
【分析】
根据幂的乘方,底数不变指数相乘,同底数幂相乘,底数不变指数相加,计算后再根据指数相等列式求解即可.
【详解】
解:∵3x-3•9x=3x-3•32x=3x-3+2x=36,
∴x-3+2x=6,
解得x=3.
故答案为:3.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此题考查同底数幂的乘法以及幂的乘方与积的乘方,关键是等式两边均化为底数均为3的幂进行计算.
4、24
【解析】
【分析】
取FG的中点E,连接EC,根据直角三角形斜边上的中线等于斜边的一半可得EC=AC,从而可推出∠EAC=∠AEC=∠F+∠ECF=2∠F,已知,∠BAC=72°,则不难求得∠BAG的度数.
【详解】
解:如图,取FG的中点E,连接EC.
∵FC∥AB,
∴∠GCF=90°,
∴EC=FG=AC,
∴∠EAC=∠AEC=∠F+∠ECF=2∠F,
设∠BAG=x,则∠F=x,
∵∠BAC=72°,
∴x+2x=72°,
∴x=24°,
∴∠BAG=24°,
故答案为:24.
【点睛】
本题考查了直角三角形斜边上的中线,平行线的性质以及角的计算,解题的关键是构造三个等腰三角形.直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.
5、
【解析】
【分析】
某树主干长出x根枝干,每个枝干又长出x根小分支,则小分支有根,可得主干、枝干和小分支总数为根,再列方程解方程,从而可得答案.
【详解】
解:某树主干长出x根枝干,每个枝干又长出x根小分支,则
解得:
经检验:不符合题意;取
答:主干长出枝干的根数x为
故答案为:
【点睛】
本题考查的是一元二次方程的应用,理解题意,用含的代数式表示主干、枝干和小分支总数是解本题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
三、解答题
1、(1)证明见解析;(2);(3)或
【分析】
(1)根据矩形和勾股定理的性质,得;再根据直角等腰三角形的性质计算,即可完成证明;
(2)根据矩形和勾股定理的性质,得,再根据勾股定理、直角等腰三角形的性质计算,即可得到答案;
(3)过点E作于点F,交AD于点Q,通过证明四边形和四边形是矩形,得,根据等腰直角三角形性质,推导得,通过证明,得,根据题意,等腰三角形分三种情况分析,当时,根据(2)的结论,得:,通过求解一元二次方程,得;当时,根据勾股定理列一元二次方程并求解,推导得不成立,当时,结合矩形的性质,计算得,从而完成求解.
【详解】
(1)∵四边形ABCD是矩形,AC是对角线
∴,
∴
∵以AC为直角边作等腰直角三角形EAC,且
∴;
(2)∵四边形ABCD是矩形,
∴,
∵以PC为直角边作等腰直角三角形EPC,
∴
∴;
(3)过点E作于点F,交AD于点Q,
∴,
∵四边形ABCD是矩形
∴,,
∴四边形和四边形是矩形
∴
∵等腰直角三角形EPC,
∴,
∴
∴
在和中
∴,
∴,
∴,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
①当时,得:,
∴,
解得,
∵,故舍去;
②当时,得:
,
∴
∵
∴无实数解;
③当时
∵
∴
∵,,
∴四边形为矩形
∴
∵,
∴
∴
∴综上所述,或时,是等腰三角形.
【点睛】
本题考查了直角三角形、等腰三角形、勾股定理、矩形、一元二次方程、全等三角形的知识;解题的关键是熟练掌握等腰三角形、勾股定理、一元二次方程的性质,从而完成求解.
2、
(1)点E
(2)① 90;② 30或150
(3)N(0,)或(0,- )
【分析】
(1)AE、BE、AB满足勾股定理,且AE=AB,可知为等腰直角三角形,则∠AEB=45°,故E点可使线段AB的可视角为45°.
(2)①由半径所对的圆周角为90°即可得出∠AMB为90°.
②连接AP、BP,即可得出为等边三角形,由圆周角定理即可求得∠AMB为30°或150°.
(3)以AB为弦作圆M且过点N,由圆周角定理可得出当圆心角AMB最大时,圆周角ANB最大,由直线与圆的位置关系得出当y轴与圆M相切时圆心角AMB最大,进而可求得N点坐标.
(1)
连接AE,BE
∵AE=4,AB=4,AE⊥AB
∴为等腰直角三角形
∴∠AEB=45°.
故使得线段AB的可视角为45°的可视点是点E.
(2)
①有题意可知,此时AB为⊙P直径
由半径所对的圆周角为90°可知∠AMB为90°
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
②当⊙P的半径为4时,AB为⊙P一条弦,连接AP,BP
∵BP=AP=4,AB=4
∴为等边三角形
∴∠APB=60°
当点M在圆心一侧由圆周角定理知∠AMB=
当点M不在圆心一侧由内切四边形性质可知∠AMB=180°-30°=150°
(3)
(3)解: ∵过不在同一条直线上的三点确定一个圆,
∴A、B、N三点共圆,且过A、B两点的圆有无数个,圆心在直线x=3上.
即:点N的位置为过A、B两点的圆与y轴的交点.
设过A、B两点的圆为⊙M,半径为r.
当r<3时,y轴与⊙M无交点,不符题意舍去.
如图所示:
当r=3时,y轴与⊙M交于一点,此时y轴与⊙M相切,切点即为点N.
当r>3时,y轴与⊙M1交于两点,此时y轴与⊙M1相交,交点设为N1、N2.
连接AM、BM、AN、BN、AM1、BM1、AN1、BN1.
此时,∠ANB、∠AMB分别为⊙M中弧AB所对的圆周角和圆心角;
∠AN1B、∠AM1B分别为⊙M1中弧AB所对的圆周角和圆心角.
∵∠1=∠M1AM+∠AM1M,
∠2=∠M1BM+∠BM1M,
∴∠1+∠2=∠M1AM+∠AM1M+∠BM1M+∠M1BM,
即∠AMB=∠M1AM+∠AM1B+∠M1BM
∴∠AMB>∠AM1B
∴∠ANB>∠AN1B
∵∠AN1B=∠AN2B
∴∠ANB>∠AN2B
∴当y轴与⊙M相切于点N时,∠ANB的值最大.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在Rt△AMC中,AM=r=3,AC=2
∴MC=
∵MN⊥y轴,MC⊥AB,
∴四边形OCMN为矩形.
∴ON=MC=
∴N(0,)
同理,当点N在y轴负半轴时,坐标为(0,- )
综述所述,N(0,)或(0,-).
【点睛】
本题考查了圆周角定理,将可视角的定义转化为圆内弦AB的圆周角是解题的关键,再结合图象计算即可.
3、(1)①图见解析;②图见解析;(2)线段垂直平分线上的点到这条线段两个端点的距离相等,等边对等角,110,80,40.
【分析】
(1)①根据线段垂直平分线的尺规作图即可得;
②先连接,再根据角平分线的尺规作图即可得;
(2)先根据线段垂直平分线的性质可得,再根据等腰三角形的性质可得,然后根据三角形的内角和定理可得,从而可得,最后根据角平分线的定义即可得.
【详解】
解:(1)①作边的垂直平分线交于点,交于点如图所示:
②连接,作的平分线交于点如图所示:
(2)∵垂直平分线段,
∴,(线段垂直平分线上的点到这条线段两个端点的距离相等)
∴,(等边对等角)
∵,
∴,
∵,
∴,
∴,
∵平分,
∴.
【点睛】
本题考查了线段垂直平分线和角平分线的尺规作图、线段垂直平分线的性质、等腰三角形的性质等知识点,熟练掌握尺规作图和线段垂直平分线的性质是解题关键.
4、两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行
【分析】
由题意根据平行线的性质与判定即可补充说理过程.
【详解】
解:(已知),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(两直线平行,内错角相等),
又(已知),
(等量代换),
(已知),
,
(同旁内角互补,两直线平行).
故答案为:两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行.
【点睛】
本题考查平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.
5、每件商品应降价1元.
【分析】
设每件商品应降价x元,得出降价后的销量及每件的盈利,然后可列出方程,解出即可.
【详解】
解:设每件商品应降价x元,则每天可售出300+20=300+200x件,
由题意得:(2-x)(300+200x)=500,
解得:x=(舍去)或x=1.
每件商品应降价1元.
【点睛】
本题考查一元二次方程的应用,关键找到降价和卖的件数的关系,根据利润列方程求解.
相关试卷
真题解析湖南省新化县中考数学备考模拟练习 (B)卷(含答案详解):
这是一份真题解析湖南省新化县中考数学备考模拟练习 (B)卷(含答案详解),共34页。试卷主要包含了如图,A,下列现象,不等式的最小整数解是,下列各式中,不是代数式的是等内容,欢迎下载使用。
【真题汇编】湖南省新化县中考数学真题模拟测评 (A)卷(精选):
这是一份【真题汇编】湖南省新化县中考数学真题模拟测评 (A)卷(精选),共30页。
【真题汇编】湖南省新化县中考数学模拟真题 (B)卷(精选):
这是一份【真题汇编】湖南省新化县中考数学模拟真题 (B)卷(精选),共27页。试卷主要包含了和按如图所示的位置摆放,顶点B,下列函数中,随的增大而减小的是,一元二次方程的根为等内容,欢迎下载使用。