2024年陕西省中考数学模拟试卷19
展开
这是一份2024年陕西省中考数学模拟试卷19,共33页。试卷主要包含了2019的相反数是,下列计算正确的是,一次函数的图象不经过等内容,欢迎下载使用。
1.2019的相反数是( )
A.B.-2019C.D.2019
2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=( )
A.40° B.50°
C.60° D.70°
中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为( )
A.B.C.D.
4.某地区2021年元旦的最高气温为,最低气温为,那么该地区这天的最低气温比最高气温低( )
A.B.C.D.
5.下列计算正确的是( )
A.B.
C.D.
6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为( )
A.101313B.91313
C.81313D.71313
.
7.一次函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
8.如图,在平行四边形ABCD中,对角线与相交于点,则下列结论一定正确的是( )
B.
C.D.
9.如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是( )
A.110° B.130°
C.140° D.160°
10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.平移后得到的抛物线的顶点一定在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二.填空题(共 4 小题)
11.计算:(15)﹣1−4= .
12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是 .
(12题图) (14题图)
13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=kx(k≠0)的图象经过其中两点,则m的值为 .
14.如图,菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点.若菱形ABCD的周长为32,则OE的长为 .
三.解答题(共 11 小题)
15.解不等式组: .
16.解分式方程
17.如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)
18.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.
随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,
并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表
根据以上图表,解答下列问题:
(1)这次被调查的同学共有 人,a= ,m= ;
(2)求扇形统计图中扇形D的圆心角的度数;
(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?
20.张家界大峡谷玻璃桥是我市又一闻名中外的五星景点.某校初三年级在一次研学活动中,数学研学小组设计以下方案测量桥的高度.如图,在桥面正下方的谷底选一观测点,观测到桥面,的仰角分别为,测得长为320米,求观测点到桥面的距离.(结果保留整数,参考数据:)
21.某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.
(1)求y关于x的函数解析式;
(2)某农户一次购买玉米种子30千克,需付款多少元?
22.为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字,
(1)“A志愿者被选中”是______事件(填“随机”或“不可能”或“必然”);
(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A,B两名志愿者被选中的概率.
23.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.
(1)求证:∠CAD=∠CBA.
(2)求OE的长.
24.如图,已知抛物线经过,,三点.
(1)求该抛物线的解析式;
(2)经过点B的直线交y轴于点D,交线段于点E,
若.
已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧.点R是直线上的动点,若是以点Q为直角顶点的等腰直角三角形,求点P的坐标.
25.如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.
(1)填空:b= ;
(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;
(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.
2024 年陕西省中考数学模拟试卷
一.选择题(共 10 小题)
1.2019的相反数是
A.B.-2019C.D.2019
【答案】B
【解析】2019的相反数是-2019.故选B.
2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=( )
A.40°B.50°C.60°D.70°
【分析】根据等腰三角形的性质可求∠ACB,再根据平行线的性质可求∠BCD.
【解析】∵在△ABC中,AB=AC,∠A=40°,
∴∠ACB=70°,
∵CD∥AB,
∴∠ACD=180°﹣∠A=140°,
∴∠BCD=∠ACD﹣∠ACB=70°.
故选:D.
3.中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为( )
A.B.C.D.
【答案】B
【分析】结合科学计数法的表示方法即可求解.
【详解】解:50亿即5000000000,故用科学计数法表示为,
故答案是:B.
【点睛】本题考察科学计数法的表示方法,难度不大,属于基础题。解题关键即掌握科学计数法的表示方法,科学计数法的表示形式为,其中,n为整数.此外熟记常用的数量单位,如万即是,亿即是等.
4.某地区2021年元旦的最高气温为,最低气温为,那么该地区这天的最低气温比最高气温低( )
A.B.C.D.
【答案】C
【分析】用最高温度减去最低温度,再利用减去一个数等于加上这个数的相反数进行计算即可得解.
【详解】解:9-(-2)=9+2=11,
故选:C.
【点睛】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.
5.下列计算正确的是( )
A.B.
C.D.
【答案】A
【分析】
根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.
【详解】
A、,正确,故该选项符合题意;
B、,错误,故该选项不合题意;
C、,错误,故该选项不合题意;
D、与不是同类项,不能合并,故该选项不合题意;
故选:A.
【点睛】
本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.
6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为( )
A.101313B.91313C.81313D.71313
【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.
【解析】由勾股定理得:AC=22+32=13,
∵S△ABC=3×3−12×1×2−12×1×3−12×2×3=3.5,
∴12AC⋅BD=72,
∴13⋅BD=7,
∴BD=71313,
故选:D.
7.一次函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】D
【分析】根据即可求解.
【详解】解:∵一次函数中,
∴一次函数的图象不经过第四象限,
故选:D.
【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.
8.如图,在平行四边形ABCD中,对角线与相交于点,则下列结论一定正确的是( )
A.B.C.D.
【答案】B
【分析】根据平行四边形的性质逐项分析判断即可求解.
【详解】∵四边形是平行四边形,对角线与相交于点,
A. ,不一定成立,故该选项不正确,不符合题意;
B. ,故该选项正确,符合题意;
C. ,不一定成立,故该选项不正确,不符合题意;
D. ,不一定成立,故该选项不正确,不符合题意;
故选:B.
【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.
9.如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是( )
A.110°B.130°C.140°D.160°
【分析】连接BC,如图,利用圆周角定理得到∠ACB=90°,则∠B=50°,然后利用圆的内接四边形的性质求∠ADC的度数.
【解析】如图,连接BC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠B=90°﹣∠CAB=90°﹣40°=50°,
∵∠B+∠ADC=180°,
∴∠ADC=180°﹣50°=130°.
故选:B.
10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( )
A.第一象限B.第二象限C.第三象限D.第四象限
【分析】根据平移规律得到平移后抛物线的顶点坐标,然后结合m的取值范围判断新抛物线的顶点所在的象限即可.
【解析】∵y=x2﹣(m﹣1)x+m=(x−m−12)2+m−(m−1)24,
∴该抛物线顶点坐标是(m−12,m−(m−1)24),
∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(m−12,m−(m−1)24−3),
∵m>1,
∴m﹣1>0,
∴m−12>0,
∵m−(m−1)24−3=4m−(m2−2m+1)−124=−(m−3)2−44=−(m−3)24−1<0,
∴点(m−12,m−(m−1)24−3)在第四象限;
故选:D.
二.填空题(共 4 小题)
11.计算:(15)﹣1−4= .
12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是 .
【分析】根据正五边形的性质和内角和为540°,求得每个内角的度数为108°,再结合等腰三角形和邻补角的定义即可解答.
【解析】因为五边形ABCDE是正五边形,
所以∠C=(5−2)⋅180°5=108°,BC=DC,
所以∠BDC=180°−108°2=36°,
所以∠BDM=180°﹣36°=144°,
故答案为:144°.
13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=kx(k≠0)的图象经过其中两点,则m的值为 ﹣1 .
【分析】根据已知条件得到点A(﹣2,1)在第三象限,求得点C(﹣6,m)一定在第三象限,由于反比例函数y=kx(k≠0)的图象经过其中两点,于是得到反比例函数y=kx(k≠0)的图象经过B(3,2),C(﹣6,m),于是得到结论.
【解析】∵点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限,点A(﹣2,1)在第三象限,
∴点C(﹣6,m)一定在第三象限,
∵B(3,2)在第一象限,反比例函数y=kx(k≠0)的图象经过其中两点,
∴反比例函数y=kx(k≠0)的图象经过B(3,2),C(﹣6,m),
∴3×2=﹣6m,
∴m=﹣1,
故答案为:﹣1.
14.如图,菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点.若菱形ABCD的周长为32,则OE的长为
【答案】4
【分析】由菱形的性质得出AB=BC=CD=AD=8,AC⊥BD,则∠AOB=90°,由直角三角形斜边上的中线性质即可得出答案.
【解析】∵四边形ABCD是菱形,
∴AB=BC=CD=AD,AC⊥BD,
∴∠AOB=90°,
∵菱形ABCD的周长为32,
∴AB=8,
∵E为AB边中点,
∴OE=12AB=4.
14.
三.解答题(共 11 小题)
15.解不等式组: .
【解析】,
解①得:x
相关试卷
这是一份2024年陕西省中考数学模拟试卷17,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年陕西省中考数学模拟试卷15,共26页。试卷主要包含了选择题.,填空题.,解答题.等内容,欢迎下载使用。
这是一份2024年陕西省中考数学模拟试卷14,共27页。试卷主要包含了选择题.,填空题.,解答题等内容,欢迎下载使用。