年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024中考数学二次函数压轴专题训练-专题03最值问题(含解析)

    2024中考数学二次函数压轴专题训练-专题03最值问题(含解析)第1页
    2024中考数学二次函数压轴专题训练-专题03最值问题(含解析)第2页
    2024中考数学二次函数压轴专题训练-专题03最值问题(含解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024中考数学二次函数压轴专题训练-专题03最值问题(含解析)

    展开

    这是一份2024中考数学二次函数压轴专题训练-专题03最值问题(含解析),共29页。
    专题03 最值问题
    训练题01【2023·浙江杭州·中考真题】
    设二次函数是实数,则( )
    A.当时,函数的最小值为
    B.当时,函数的最小值为
    C.当时,函数的最小值为
    D.当时,函数的最小值为
    训练题02【2023·湖北荆州·中考真题】
    已知:关于的函数.

    (1)若函数的图象与坐标轴有两个公共点,且,则的值是___________;
    (2)如图,若函数的图象为抛物线,与轴有两个公共点,,并与动直线交于点,连接,,,,其中交轴于点,交于点.设的面积为,的面积为.
    ①当点为抛物线顶点时,求的面积;
    ②探究直线在运动过程中,是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
    训练题03【2022·天津·中考真题】
    已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.
    (Ⅰ)若b=﹣2,c=﹣3,
    ①求点P的坐标;
    ②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;
    (Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.
    训练题04【2023·湖南娄底·中考真题】
    如图,抛物线过点、点,交y轴于点C.

    (1)求b,c的值.
    (2)点是抛物线上的动点,当取何值时,的面积最大?并求出面积的最大值.
    训练题05【2021·深圳·二模】
    如图1,抛物线y=﹣x2+bx+c交x轴于A、B两点,其中点A坐标为(﹣3,0),与y轴交于点C(0,3),点D为抛物线y=﹣x2+bx+c的顶点.
    (1)求抛物线的函数表达式;
    (2)若点E在x轴上,且∠ECA=∠CAD,求点E的坐标;
    (3)如图2,点P为线段AC上方的抛物线上任一点,过点P作PH⊥x轴于点H,与AC交于点M.
    ①求△APC的面积最大时点P的坐标;
    ②在①的条件下,若点N为y轴上一动点,求HN+CN的最小值.
    训练题06【2022秋·山东菏泽·九年级期末】
    如图,抛物线与轴交于,两点.
    (1)求该抛物线的解析式;
    (2)设(1)中的抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由.
    (3)在(1)中的抛物线上的第二象限上是否存在一点,使的面积最大?若存在,求出面积的最大值.若没有,请说明理由.
    训练题07【2023·山东聊城·中考真题】
    如图①,抛物线与x轴交于点,,与y轴交于点C,连接AC,BC.点P是x轴上任意一点.
    (1)求抛物线的表达式;
    (2)如图②,当点从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作,交AC于点E,作,垂足为点D.当m为何值时,面积最大,并求出最大值.
    训练题08【2023·浙江·一模】
    在平面直角坐标系中,当和时,二次函数(,是常数,)的函数值相等.
    (1)若该函数的最大值为,求函数的表达式,并写出函数图象的顶点坐标;
    (2)若该函数的图象与轴有且只有一个交点,求,的值.
    (3)记(2)中的抛物线为,将抛物线向上平移个单位得到抛物线,当时,抛物线的最大值与最小值之差为,求的值.
    训练题09【2023·浙江杭州·滨江期末】
    二次函数(为实数,且),对于满足的任意一个的值,都有,则的最大值为( )
    A.B.C.2D.
    训练题10【2023·黑龙江绥化·中考真题】
    如图,抛物线的图象经过,,三点,且一次函数的图象经过点.

    (1)求抛物线和一次函数的解析式.
    (2)将抛物线的图象向右平移个单位长度得到抛物线,此抛物线的图象与轴交于,两点(点在点左侧).点是抛物线上的一个动点且在直线下方.已知点的横坐标为.过点作于点.求为何值时,有最大值,最大值是多少?
    题型训练
    答案&解析
    训练题01【2023·浙江杭州·中考真题】
    【答案】A
    【分析】令,则,解得:,,从而求得抛物线对称轴为直线,再分别求出当或时函数y的最小值即可求解.
    【详解】解:令,则,
    解得:,,
    ∴抛物线对称轴为直线
    当时, 抛物线对称轴为直线,
    把代入,得,

    ∴当,时,y有最小值,最小值为.
    故A正确,B错误;
    当时, 抛物线对称轴为直线,
    把代入,得,

    ∴当,时,y有最小值,最小值为,
    故C、D错误,
    故选:A.
    训练题02【2023·湖北荆州·中考真题】
    【答案】(1)0或2或
    (2)①6,②存在,
    【分析】(1)根据函数与坐标轴交点情况,分情况讨论函数为一次函数和二次函数的时候,按照图像的性质以及与坐标轴交点的情况即可求出值.
    (2)①根据和的坐标点即可求出抛物线的解析式,即可求出顶点坐标,从而求出长度,再利用和的坐标点即可求出的直线解析式,结合即可求出点坐标,从而求出长度,最后利用面积法即可求出的面积.
    ②观察图形,用值表示出点坐标,再根据平行线分线段成比例求出长度,利用割补法表示出和,将二者相减转化成关于的二次函数的顶点式,利用取值范围即可求出的最小值.
    【详解】(1)解:函数的图象与坐标轴有两个公共点,



    当函数为一次函数时,,

    当函数为二次函数时,

    若函数的图象与坐标轴有两个公共点,即与轴,轴分别只有一个交点时,


    当函数为二次函数时,函数的图象与坐标轴有两个公共点, 即其中一点经过原点,
    ,,.
    综上所述,或0.故答案为:0或2或.
    (2)解:①如图所示,设直线与交于点,直线与交于点.

    依题意得:,解得:
    抛物线的解析式为:.
    点为抛物线顶点时,,,
    ,,
    由,得直线的解析式为,
    在直线上,且在直线上,则的横坐标等于的横坐标,

    ,,


    故答案为:6.
    ②存在最大值,理由如下:
    如图,设直线交轴于.
    由①得:,,,,,

    ,,


    即,
    ,,

    ,,,当时,有最大值,最大值为.
    训练题03【2022·天津·中考真题】
    【分析】(Ⅰ)①利用待定系数法求出抛物线的解析式,即可得顶点P的坐标;
    ②求出直线BP的解析式,设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),表示出MG的长,可得关于m的二次函数,根据二次函数的最值即可求解;
    (Ⅱ)由3b=2c得b=﹣2a,c=﹣3a,抛物线的解析式为y=ax2﹣2a﹣3a.可得顶点P的坐标为(1,﹣4a),点N的坐标为(2,﹣3a),作点P关于y轴的对称点P',作点N关于x轴的对称点N',得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),当满足条件的点E,F落在直线P'N'上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P'N'=5延长P'P与直线x=2相交于点H,则P'H⊥N'H.在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.由勾股定理可得P'N′2=P'H2+HN2=9+49a2=25.解得a1=,a2=﹣(舍).可得点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).利用待定系数法得直线P'N′的解析式为y=x﹣.即可得点E,F的坐标.
    【详解】解:(Ⅰ)①若b=﹣2,c=﹣3,
    则抛物线y=ax2+bx+c=ax2﹣2x﹣3,
    ∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),
    ∴a+2﹣3=0,解得a=1,
    ∴抛物线为y=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴顶点P的坐标为(1,﹣4);
    ②当y=0时,x2﹣2x﹣3=0,
    解得x1=﹣1,x2=3,
    ∴B(3,0),
    设直线BP的解析式为y=kx+n,
    ∴,解得,
    ∴直线BP的解析式为y=2x﹣6,
    ∵直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,
    设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),
    ∴MG=2m﹣6﹣(m2﹣2m﹣3)=﹣m2+4m﹣3=﹣(m﹣2)2+1,
    ∴当m=2时,MG取得最大值1,
    此时,点M(2,﹣3),则G(2,﹣2);
    (Ⅱ)∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),
    ∴a﹣b+c=0,
    又3b=2c,
    b=﹣2a,c=﹣3a(a>0),
    ∴抛物线的解析式为y=ax2﹣2ax﹣3a.
    ∴y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,
    ∴顶点P的坐标为(1,﹣4a),
    ∵直线x=2与抛物线相交于点N,
    ∴点N的坐标为(2,﹣3a),
    作点P关于y轴的对称点P',作点N关于x轴的对称点N',
    得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),
    当满足条件的点E,F落在直线P'N'上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P'N'=5.
    延长P'P与直线x=2相交于点H,则P'H⊥N'H.
    在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.
    ∴P'N′2=P'H2+HN′2=9+49a2=25.
    解得a1=,a2=﹣(舍).
    ∴点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).
    ∴直线P'N′的解析式为y=x﹣.
    ∴点E(,0),点F(0,﹣).
    训练题04【2023·湖南娄底·中考真题】
    【答案】(1),
    (2)当时,的面积由最大值,最大值为
    【分析】(1)将将、代入抛物线即可求解;
    (2)由(1)可知:,得,可求得的解析式为,过点P作轴,交于点E,交轴于点,易得,根据的面积,可得的面积,即可求解;
    【详解】(1)解:将、代入抛物线中,
    可得:,解得:,
    即:,;
    (2)①由(1)可知:,
    当时,,即,
    设的解析式为:,
    将,代入中,
    可得,解得:,
    ∴的解析式为:,
    过点P作轴,交于点E,交轴于点,

    ∵,则,
    ∴点E的横坐标也为,则纵坐标为,
    ∴,
    的面积
    ,∵,∴当时,的面积有最大值,最大值为
    训练题05【2021·深圳·二模】
    【分析】(1)用待定系数法即可求解;
    (2)①当点E在点A的左侧时,在Rt△CHN中,NH=CN=CH=,在Rt△AHN中,tan∠HAN=tan∠DAC==,即tan∠ECA=tan∠CAD=,在Rt△CEK中,tan∠ECA=,进而求解;②当点E(E′)的点A的右侧时,∠ECA=∠CAD,则直线CE′∥AD,则直线CE′的表达式为y=2x+3,进而求解;
    (3)过点H作HR⊥CG于点R,交CO于点N,则点N为所求点,进而求解.
    【详解】解:(1)由题意得:,解得,
    故抛物线的表达式为y=﹣x2﹣2x+3;
    (2)①当点E在点A的左侧时,如图1,
    由抛物线的表达式知,点D的坐标为(﹣1,4),
    延长AD交y轴于点H,过点H作HN交AC的延长线于点N,
    由点A、D的坐标得,直线AD的表达式为y=2(x+3),
    故点H的坐标为(0,6),
    则CH=6﹣3=3,
    由点A、C的坐标知,∠ACO=45°=∠HCN,AC=3,
    在Rt△CHN中,NH=CN=CH=,
    在Rt△AHN中,tan∠HAN=tan∠DAC===,
    ∴tan∠ECA=tan∠CAD=,
    过点E作EK⊥CA交CA的延长线于点K,
    在Rt△AEK中,∠EAK=∠CAO=45°,
    故设AK=EK=x,则AE=x,
    在Rt△CEK中,tan∠ECA==,
    解得x=,故AE=x=3,
    则点E的坐标为(﹣6,0);
    ②当点E(E′)的点A的右侧时,
    ∵∠ECA=∠CAD,
    则直线CE′∥AD,
    则直线CE′的表达式为y=2x+r,
    而直线CE′过点C,故r=3,
    故直线CE′的表达式为y=2x+3,
    令y=0,则x=﹣,
    故点E′的坐标为(﹣,0);
    综上,点E的坐标为(﹣6,0)或(﹣,0);
    (3)设点P的坐标为(x,﹣x2﹣2x+3),
    由点A、C的坐标得,直线AC的表达式为y=x+3,
    则点M(x,x+3),
    则△APC的面积=×OA×PM=×3×(﹣x2﹣2x+3﹣x﹣3)=(﹣x2﹣3x),
    ∵﹣<0,故△APC的面积有最大值,
    当x=﹣时,点P的坐标为(﹣,),则点H(﹣,0),
    在x轴上取点G(3,0),则OG=OC,连接CG,
    则∠GCO=45°,
    过点H作HR⊥CG于点R,交CO于点N,则点N为所求点,
    理由:HN+CN=HN+CNsin∠GCO=HN+NR=HR为最小值,
    ∵∠CGO=45°,故△HRG为等腰直角三角形,
    则HR=HG=(3+)=,
    即HN+CN的最小值为.
    训练题06【2022秋·山东菏泽·九年级期末】
    【答案】(1)抛物线的解析式为:
    (2)存在,点的坐标为
    (3)存在,最大值为
    【分析】(1)根据题意可知,将点、的坐标代入函数解析式,列出方程组即可求得、的值,求得函数解析式;
    (2)根据题意可知,边的长是定值,要想的周长最小,即是最小,所以此题的关键是确定点的位置,找到点的对称点,求得直线的解析式,求得与对称轴的交点即是所求;
    (3)设,过点作轴交于点,连接、、,根据,将表示成二次函数,再根据二次函数的性质,即可求得的最大值.
    【详解】(1)解:将,代入中,
    可得:,
    解得:,
    ∴抛物线的解析式为:;
    (2)解:存在,理由如下:
    如图,
    ∵、两点关于抛物线的对称轴对称,
    ∴直线与的交点即为点,此时周长最小,连接、,
    ∵点是抛物线与轴的交点,
    ∴的坐标为,
    又∵,
    ∴直线解析式为:,
    ∴点坐标即为,
    解得:,
    ∴;
    (3)解:存在,理由如下:
    如图,设,过点作轴交于点,连接、、,
    ∵,
    若有最大值,则就最大,
    ∴,
    ∵,
    又∵,
    ∴,
    ∴,
    ∴,
    ∴当时,最大值为.
    训练题07【2023·山东聊城·中考真题】
    【答案】(1)
    (2)时,有最大值,最大值为.
    【分析】(1)将,代入,待定系数法确定函数解析式;
    (2)如图,过点D作,过点E作,垂足为G,F,
    可证,;运用待定系数法求直线解析式,直线 解析式;设点,,则,,,,运用解直角三角形,中,,,中,,可得,,;中,,可得,,,,于是,从而确定时,最大值为.
    【详解】(1)将,代入,得,解得
    ∴抛物线解析式为:
    (2)如图,过点D作,过点E作,垂足为G,F,
    ∵,



    ∴,同理可得
    设直线的解析式为:
    则,解得
    ∴直线:
    同理由点,,可求得直线 :
    设点,,
    则,,,
    中,,
    ∴,
    中,
    ∴,解得,


    ∴;
    中,
    ∴,解得,



    ∴,
    即.
    ∵,∴时,,有最大值,最大值为.
    训练题08【2023·浙江·一模】
    【答案】(1),;
    (2),;
    (3).
    【分析】(1)根据二次函数的性质及对称轴即可解答;
    (2)根据二次函数与轴的交点个数及二次函数的性质即可解答;
    (3)根据二次函数的平移规律及二次函数的性质即可解答.
    【详解】(1)解:∵当和时,二次函数(,是常数,)的函数值相等,
    ∴二次函数的对称轴为,,
    ∵该函数的最大值为,
    ∴该函数的顶点坐标为,
    ∴,
    ∴由①②可得:,
    ∴函数表达式为:;
    (2)解:∵该函数的图象与轴有且只有一个交点,
    ∴一元二次方程,该函数的顶点坐标为,
    ∴,,
    ∴由①②可得(舍去),,
    ∴,;
    (3)解:由(2)可得的解析式为:,
    ∵将抛物线向上平移个单位得到抛物线,
    ∴,
    ∴当时,,
    ∵的顶点坐标为,且当时,抛物线的最大值与最小值之差为,
    ∴,随的增大而增大,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴.
    训练题09【2023·浙江杭州·滨江期末】
    【答案】D
    【分析】由该二次函数解析式可知,该函数图像的开口方向向下,对称轴为,该函数的最大值为,由题意可解得,根据函数图像可知的值越小,其对称轴越靠左,满足的的值越小,故令即可求得的最大值.
    【详解】解:∵函数,且,
    ∴该函数图像的开口方向向下,对称轴为,该函数有最大值,其最大值为,
    若要满足的任意一个的值,都有,
    则有,解得,
    对于该函数图像的对称轴,
    的值越小,其对称轴越靠左,如下图,
    结合图像可知,的值越小,满足的的值越小,
    ∴当取的最大值,即时,令,
    解得,,
    ∴满足的的最大值为,
    即的最大值为.
    故选:D.
    训练题10【2023·黑龙江绥化·中考真题】
    【答案】(1),
    (2)当时,的最大值为
    【分析】(1)待定系数法求解析式即可求解;
    (2)得出是等腰直角三角形,是等腰直角三角形,则,点在抛物线上,且横坐标为得出,进而可得,则,根据二次函数的性质即可求解.
    【详解】(1)解:把,,代入
    得 ,解得

    把代入得

    (2)∵向右平移8个单位长度得到抛物线
    当,即
    解得:
    ∴,
    ∵过,,三点

    在直线下方的抛物线上任取一点,作轴交于点,过点作轴于点

    ∵,

    ∴是等腰直角三角形
    ∵,


    ∴是等腰直角三角形

    ∵点在抛物线上,且横坐标为







    ∴当时,的最大值为.

    相关试卷

    中考数学压轴题专题复习——25几何最值问题:

    这是一份中考数学压轴题专题复习——25几何最值问题,共8页。

    中考数学压轴题满分突破训练 专题08 二次函数-线段之差最值问题:

    这是一份中考数学压轴题满分突破训练 专题08 二次函数-线段之差最值问题,文件包含专题08二次函数-线段之差最值问题解析版docx、专题08二次函数-线段之差最值问题原卷版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    2023年中考数学压轴题专题训练-最值问题:

    这是一份2023年中考数学压轴题专题训练-最值问题,共10页。试卷主要包含了射线,分别交直线于点,.等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map