【中考特训】湖南省岳阳市中考数学三年高频真题汇总卷(含答案及详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列函数中,随的增大而减小的是( )
A.B.
C.D.
2、下列图形中,能用,,三种方法表示同一个角的是( )
A.B.
C.D.
3、如图,直线AB与CD相交于点O,若,则等于( )
A.40°B.60°C.70°D.80°
4、有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是( )
A.|a|>|b|B.a+b<0C.a﹣b<0D.ab>0
5、下面四个立体图形的展开图中,是圆锥展开图的是( ).
A.B.C.D.
6、在如图所示的几何体中,从不同方向看得到的平面图形中有长方形的是( )
A.①B.②C.①②D.①②③
7、如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2),再分别连接图(2)中间的小三角形三边中点得到图(3),按这种方法继续下去,第6个图形有( )个三角形.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.20B.21C.22D.23
8、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.米B.10米C.米D.12米
9、一元二次方程的根为( ).
A.B.
C.,D.,
10、整式的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:
则关于x的方程的解为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、、所表示的有理数如图所示,则________.
2、如图,在边长相同的小正方形组成的网格中,点A、B、O都在这些小正方形的顶点上,那么sin∠AOB的值为______.
3、如图,射线,相交于点,则的内错角是__.
4、在平面直角坐标系中,点A(10,0)、B(0,3),以AB为边在第一象限作等腰直角△ABC,则点C的坐标为_______.
5、2020年10月,华为推出了高端手机,它搭载的麒麟9900芯片是全球第一颗,也是唯一一颗采用5纳米工艺制造的,集成了153亿个晶体管,比苹果的芯片多了,是目前世界上晶体管最多、功能最完整的.其中“153亿”这个数据用科学记数法可以表示为__.
三、解答题(5小题,每小题10分,共计50分)
1、如图,三角形中,点D在上,点E在上,点F,G在上,连接.己知· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,,求证:.
将证明过程补充完整,并在括号内填写推理依据.
证明:∵_____________(已知)
∴(_______________________)
∴.________(____________________)
∵(已知)
∴________(等量代换)
∴(___________________)
2、如图,在等腰中,,点是边上的中点,过点作,交的延长线于点,过点作,交于点,交于点,交于点.
求证:
(1);
(2).
3、如图,在平面直角坐标系中,抛物线与轴交于两点与轴交于点C,点M是抛物线的顶点,抛物线的对称轴与BC交于点D,与轴交于点E.
(1)求抛物线的对称轴及B点的坐标
(2)如果,求抛物线的表达式;
(3)在(2)的条件下,已知点F是该抛物线对称轴上一点,且在线段的下方,,求点的坐标
4、已知:如图,在中,,,垂足为点D,E为边AC上一点,联结BE交CD于点F,并满足.求证:
(1);
(2)过点C作,交BE于点G,交AB于点M,求证:.
5、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;
(2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;
(3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.
-参考答案-
一、单选题
1、C
【分析】
根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
【详解】
解:A.在中,y随x的增大而增大,故选项A不符合题意;
B.在中,y随x的增大与增大,不合题意;
C.在中,当x>0时,y随x的增大而减小,符合题意;
D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
故选:C.
【点睛】
本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
2、A
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
3、A
【分析】
根据对顶角的性质,可得∠1的度数.
【详解】
解:由对顶角相等,得
∠1=∠2,又∠1+∠2=80°,
∴∠1=40°.
故选:A.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.
4、C
【分析】
先根据数轴上点的位置,判断数a、b的正负和它们绝对值的大小,再根据加减法、乘法法则确定正确选项.
【详解】
解:由数轴知:﹣1<a<0<1<b,|a|<|b|,
∴选项A不正确;
a+b>0,选项B不正确;
∵a<0,b>0,
∴ab<0,选项D不正确;
∵a<b,
∴a﹣b<0,选项C正确,
故选:C.
【点睛】
本题考查了数轴上点的位置、有理数的加减法、乘法法则.理解加减法法则和乘法的符号法则是解决本题的关键.
5、B
【分析】
由棱柱,圆锥,圆柱的展开图的特点,特别是底面与侧面的特点,逐一分析即可.
【详解】
解:选项A是四棱柱的展开图,故A不符合题意;
选项B是圆锥的展开图,故B符合题意;
选项C是三棱柱的展开图,故C不符合题意;
选项D是圆柱的展开图,故D不符合题意;
故选B
【点睛】
本题考查的是简单立体图形的展开图,熟悉常见的基本的立体图形及其展开图是解本题的关键.
6、C
【分析】
分别找出每个图形从三个方向看所得到的图形即可得到答案.
【详解】
①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,符合要求;
②圆柱从左面和正面看都是长方形,从上边看是圆,符合要求;
③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,不符合要求;故选:C.
【点睛】
本题考查了从不同方向看几何体,掌握定义是关键.注意正方形是特殊的长方形.
7、B
【分析】
由第一个图中1个三角形,第二个图中5个三角形,第三个图中9个三角形,每次递增4个,即可得出第n个图形中有(4n-3)个三角形.
【详解】
解:由图知,第一个图中1个三角形,即(4×1-3)个;
第二个图中5个三角形,即(4×2-3)个;
第三个图中9个三角形,即(4×3-3)个;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
…
∴第n个图形中有(4n-3)个三角形.
∴第6个图形中有个三角形
故选B
【点睛】
本题考查了图形变化的一般规律问题.能够通过观察,掌握其内在规律是解题的关键.
8、B
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为-4,
∵水面AB宽为20米,
∴A(-10,-4),B(10,-4),
将A代入y=ax2,
-4=100a,
∴,
∴,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为-1,
∴
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
9、A
【分析】
根据方程特点,利用直接开平方法,先把方程两边开方,即可求出方程的解.
【详解】
解:,
两边直接开平方,得,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
则.
故选:A.
【点睛】
此题主要考查了直接开平方法解一元二次方程,解题的关键是掌握直接开平方法的基本步骤及方法.
10、A
【分析】
根据等式的性质把变形为;再根据表格中的数据求解即可.
【详解】
解:关于x的方程变形为,
由表格中的数据可知,当时,;
故选:A.
【点睛】
本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.
二、填空题
1、
【解析】
【分析】
根据数轴确定,得出,然后化去绝对值符号,去括号合并同类项即可.
【详解】
解:根据数轴得,
∴,
∴.
故答案为:.
【点睛】
本题考查数轴上点表示数,化简绝对值,整式加减运算,掌握数轴上点表示数,化简绝对值,整式加减运算,关键是利用数轴得出.
2、
【解析】
【分析】
如图,过点B向AO作垂线交点为C,勾股定理求出,的值,求出的长,求出值即可.
【详解】
解:如图,过点B向AO作垂线交点为C,O到AB的距离为h
∵,,,
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:.
【点睛】
本题考查了锐角三角函数值,勾股定理.解题的关键是表示出所需线段长.
3、##∠BAE
【解析】
【分析】
根据内错角的意义,结合具体的图形进行判断即可.
【详解】
解:由内错角的意义可得,与是内错角,
故答案为:.
【点睛】
本题考查内错角,掌握内错角的意义是正确解答的前提.
4、
【解析】
【分析】
根据题意作出图形,分类讨论,根据三角形全等的性质与判定即可求得点的坐标
【详解】
解:如图,
当为直角顶点时,则,
作轴,
又
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
同理可得
根据三线合一可得是的中点,则
综上所述,点C的坐标为
故答案为:
【点睛】
本题考查了等腰直角三角形的性质与判定,坐标与图形,全等三角形的性质与判定,分类讨论是解题的关键.
5、
【解析】
【分析】
科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.
【详解】
153亿.
故答案为:.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.
三、解答题
1、,同旁内角互补,两直线平行,,两直线平行,内错角相等,,同位角相等,两直线平行
【分析】
先由,证明,可得,结合已知条件证明,再证明即可.
【详解】
解:证明:∵(已知)
∴(同旁内角互补,两直线平行)
∴.(两直线平行,内错角相等)
∵(已知)
∴(等量代换)
∴(同位角相等,两直线平行)
【点睛】
本题考查的是平行线的判定与性质,掌握“平行线的判定方法”是解本题的关键.
2、
(1)见解析
(2)见解析
【分析】
(1)利用已知条件证明即可;
(2)通过证明得出,再根据,得出结论.
(1)
证明:,,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
,
,
;
(2)
证明,点是边上的中点,
,,
,
,
,
,
,
,
,
,
,
,
即.
【点睛】
本题考查了三角形相似的判定和性质以及直角三角形和等腰三角形的性质,解题的关键是掌握相似三角形的判定定理进行证明.
3、
(1)对称轴是,B(4,0)
(2)y=
(3)F( ,-5)
【分析】
(1)根据二次函数抛物线的性质,可求出对称轴,即可得B点的坐标;
(2)二次函数的y轴平行于对称轴,根据平行线分线段成比例用含a的代数式表示DE的长,MD= ,可表示M的纵坐标,然后把M的横坐标代入y=ax2−3ax−4a,可得到关于a的方程,求出a的值,即可得答案;
(3)先证△AOC∽△COB,得∠BCO=∠CAO,再求出∠CAO=∠CFB,得△AGC∽△FGB,根据相似三角形对于高的比等于相似比,可得答案.
(1)
解:∵二次函数y=ax2−3ax−4a,
∴对称轴是 ,
∵A(−1,0),
∵1+1.5=2.5,
∴1.5+2.5=4,
∴B(4,0);
(2)
∵二次函数y=ax2−3ax−4a,C在y轴上,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴C的横坐标是0,纵坐标是−4a,
∵y轴平行于对称轴,
∴ ,
∴,
∵ ,
∵MD=,
∵M的纵坐标是+
∵M的横坐标是对称轴x,
∴ ,
∴+=,
解这个方程组得: ,
∴y=ax2−3ax−4a= x2-3×()x-4×()=;
(3)
假设F点在如图所示的位置上,连接AC、CF、BF,CF与AB相交于点G,
由(2)可知:AO=1,CO=2,BO=4,
∴ ,
∴,
∵∠AOC=∠COB=90°,
∴△AOC∽△COB,
∴∠BCO=∠CAO,
∵∠CFB=∠BCO,
∴∠CAO=∠CFB,
∵∠AGC=∠FGB,
∴△AGC∽△FGB,
∴ ,
设EF=x,
∵BF2=BE2+EF2= ,AC2=22+12=5,CO2=22=4,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴= ,
解这个方程组得:x1=5,x2=-5,
∵点F在线段BC的下方,
∴x1=5(舍去),
∴F(,-5).
【点睛】
本题考查了二次函数的性质、平行线分线段成比例、一元一次方程的解法、一元二次方程方程的解法、相似三角形的判定与性质,做题的关键是相似三角形的判定与性质的灵活运用.
4、
(1)见解析
(2)见解析
【分析】
(1)由可得可得,然后再说明,即可证明结论;
(2)说明即可证明结论.
(1)
证明:∵
∴
∵,
∴∠BDC=
∴
∵,
∴∠A+∠ABC=90°,∠DCB+∠ABC=90°,
∴∠A=∠DCB
∵∠CBD=∠CBD
∴
∴.
(2)
解:∵
∴∠A=∠CBE
∵
∴∠DCB=∠CBE
∵∠AEB=∠CBE+∠BCE,∠CFM=∠CDA+∠FMD
∴∠AEB=∠CFM
∵CG⊥BE,CD⊥AB,∠CFD=∠DFB
∴∠MCF=∠FBD
∴
∴.
【点睛】
本题主要考查了相似三角形的判定与性质,灵活运用相似三角形的判定定理成为解答本题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、
(1)见解析
(2)
(3)6
【分析】
(1)作出过点E的l的垂线即可解决;
(2)设直线l交x轴于点D,则由直线解析式可求得点D、点G的坐标,从而可得OD的长.由对称性及平行可得,设点P的坐标为(a,2a-2),则可得点E的坐标,由及勾股定理可求得点的坐标;
(3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长,故只要求得CM的长即可,由A、B两点的坐标即可求得CM的长.
(1)
所作出点E的对应点E′如下图所示:
(2)
设直线l交x轴于点D
在y=2x-2中,令y=0,得x=1;令x=0,得y=-2
则点D、点G的坐标分别为(1,0)、(0,-2)
∴OD=1,OG=2
由对称性的性质得:,
∵GE∥x轴
∴
∴
∴
∴
设点P的坐标为(a,2a-2),其中a>0,则可得点E的坐标为(a,-2)
∴EG=a
∴
∴
在Rt△中,由勾股定理得:
解得:
当时,
所以点P的坐标为
(3)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长
∵A,B两点的坐标分别为(-2,-6),(4,6)
∴CM=4-(-2)=6
则点运动路径的长为6
故答案为:6
【点睛】
本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.
x
-1
0
1
2
3
-8
-4
0
4
8
【高频真题解析】湖南省中考数学三年高频真题汇总 卷(Ⅰ)(含答案及详解): 这是一份【高频真题解析】湖南省中考数学三年高频真题汇总 卷(Ⅰ)(含答案及详解),共28页。试卷主要包含了下列式子中,与是同类项的是,一元二次方程的根为.等内容,欢迎下载使用。
备考特训湖南省常德市中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解): 这是一份备考特训湖南省常德市中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解),共28页。试卷主要包含了下列图像中表示是的函数的有几个,一元二次方程的根为.等内容,欢迎下载使用。
备考特训湖南省怀化市中考数学三年高频真题汇总 卷(Ⅰ)(含答案及详解): 这是一份备考特训湖南省怀化市中考数学三年高频真题汇总 卷(Ⅰ)(含答案及详解),共30页。试卷主要包含了如图,E,如图,下列条件中不能判定的是等内容,欢迎下载使用。