【中考特训】湖南省怀化市中考数学三年高频真题汇总 卷(Ⅱ)(含详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示,在长方形ABCD中,,,且,将长方形ABCD绕边AB所在的直线旋转一周形成圆柱甲,再将长方形ABCD绕边BC所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分別为、.下列结论中正确的是( )
A.B.C.D.不确定
2、如图,已知与都是以A为直角顶点的等腰直角三角形,绕顶点A旋转,连接.以下三个结论:①;②;③;其中结论正确的个数是( )
A.1B.2C.3D.0
3、下列式子中,与是同类项的是( )
A.abB.C.D.
4、用符号表示关于自然数x的代数式,我们规定:当x为偶数时,;当x为奇数时,.例如:,.设,,,…,.以此规律,得到一列数,,,…,,则这2022个数之和等于( )
A.3631B.4719C.4723D.4725
5、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
①;②;③;④.
A.①②③B.①②④C.①③④D.②③④
6、如图,于点,于点,于点,下列关于高的说法错误的是( )
A.在中,是边上的高B.在中,是边上的高
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C.在中,是边上的高D.在中,是边上的高
7、下列宣传图案中,既中心对称图形又是轴对称图形的是( )
A.B.
C.D.
8、下列方程中,解为的方程是( )
A.B.C.D.
9、整式的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:
则关于x的方程的解为( )
A.B.C.D.
10、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )
A.2个B.3个C.4个D.5个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知3x﹣3•9x=272,则x的值是 ___.
2、不等式的解集是__.
3、若过某多边形一个顶点的所有对角线将这个多边形分成3个三角形,则这个多边形是________边形.
4、两个相似多边形的周长比是3:4,其中较小的多边形的面积为,则较大的多边形的面积为______cm2.
5、如图,在矩形ABCD中,cm,cm.动点P、Q分别从点A、C以1cm/s的速度同时出发.动点P沿AB向终点B运动,动点Q沿CD向终点D运动,连结PQ交对角线AC于点O.设点P的运动时间为.
(1)当四边形APQD是矩形时,t的值为______.
(2)当四边形APCQ是菱形时,t的值为______.
(3)当是等腰三角形时,t的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、数学课上,王老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.
(1)请用两种不同的方法求图2大正方形的面积:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
方法1: ;
方法2: ;
(2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系 ;
(3)根据(2)题中的等量关系,解决如下问题:
①已知:a+b=5,(a﹣b)2=13,求ab的值;
②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.
2、某商品每天可售出300件,每件获利2元.为了尽快减少库存,店主决定降价销售.根据经验可知,如果每件降价0.1元,平均每天可多售出20件,店主要想平均每天获利500元,每件商品应降价多少元?
3、已知:如图,在四边形中,,过点作,分别交、点、,且满足.
(1)求证:
(2)求证:
4、将两块完全相同的且含角的直角三角板和按如图所示位置放置,现将绕A点按逆时针方向旋转.如图,与交于点M,与交于点N,与交于点P.
(1)在旋转过程中,连接,求证:所在的直线是线段的垂直平分线.
(2)在旋转过程中,是否能成为直角三角形?若能,直接写出旋转角的度数;若不能,说明理由.
5、甲、乙两人沿同一直道从A地去B地.已知A,B两地相距9000m,甲的步行速度为100m/min,他每走半个小时就休息15min,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A地的距离(单位:m)与时间x(单位:min)之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地).
(1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图象;
(2)求甲、乙两人在途中相遇的时间.
-参考答案-
一、单选题
1、C
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据公式,得=,=,判断选择即可.
【详解】
∵=,=,
∴=.
故选C.
【点睛】
本题考查了圆柱体的形成及其侧面积的计算,正确理解侧面积的计算公式是解题的关键.
2、B
【分析】
证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依据,推出,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,∠ACB=45°,求出∠BMC=90°,即可判断③正确.
【详解】
解:∵与都是以A为直角顶点的等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴,故①正确;
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∵,
∴,
∴不成立,故②错误;
设BD交CE于M,
∵∠ACE+∠DBC=45°,∠ACB=45°,
∴∠BMC=90°,
∴,故③正确,
故选:B.
【点睛】
此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键.
3、D
【分析】
根据同类项是字母相同,相同字母的指数也相同的两个单项式进行解答即可.
【详解】
解:A、ab与ab2不是同类项,不符合题意;
B、a2b与ab2不是同类项,不符合题意;
C、ab2c与ab2不是同类项,不符合题意;
D、-2ab2与ab2是同类项,符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:D.
【点睛】
本题考查同类项,理解同类项的概念是解答的关键.
4、D
【分析】
根据题意分别求出x2=4,x3=2,x4=1,x5=4,…,由此可得从x2开始,每三个数循环一次,进而继续求解即可.
【详解】
解:∵x1=8,
∴x2=f(8)=4,
x3=f(4)=2,
x4=f(2)=1,
x5=f(1)=4,
…,
从x2开始,每三个数循环一次,
∴(2022-1)÷3=6732,
∵x2+x3+x4=7,
∴=8+673×7+4+2=4725.
故选:D.
【点睛】
本题考查数字的变化规律,能够通过所给的数,通过计算找到数的循环规律是解题的关键.
5、B
【分析】
根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
【详解】
解:∵四边形ABCD是正方形,
∴,,
在与中,
,
∴,
∴,①正确;
∵,
,
∴,
∴,
∴,②正确;
∵GF与BG的数量关系不清楚,
∴无法得AG与GE的数量关系,③错误;
∵,
∴,
∴,
即,④正确;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
综上可得:①②④正确,
故选:B.
【点睛】
题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
6、C
【详解】
解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
B、在中,是边上的高,该说法正确,故本选项不符合题意;
C、在中,不是边上的高,该说法错误,故本选项符合题意;
D、在中,是边上的高,该说法正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.
7、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;
B.不是轴对称图形,也不是中心对称图形,故本选项不合题意;
C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
D.不是轴对称图形,也不是中心对称图形,故本选项不合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
8、D
【分析】
求出选项各方程的解即可.
【详解】
A、,解得:,不符合题意.
B、,解得:,不符合题意.
C、,解得:,不符合题意.
D、,解得:,符合题意.
故选:D .
【点睛】
此题考查的知识点是一元一次方程的解,关键是分别求出各方程的解.
9、A
【分析】
根据等式的性质把变形为;再根据表格中的数据求解即可.
【详解】
解:关于x的方程变形为,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由表格中的数据可知,当时,;
故选:A.
【点睛】
本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.
10、C
【分析】
设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.
【详解】
解:设原两位数的个位为 十位为 则这个两位数为
交换其个位数与十位数的位置,所得新两位数为 则
整理得:
为正整数,且
或或或
所以这个两位数为:
故选C
【点睛】
本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.
二、填空题
1、3
【解析】
【分析】
根据幂的乘方,底数不变指数相乘,同底数幂相乘,底数不变指数相加,计算后再根据指数相等列式求解即可.
【详解】
解:∵3x-3•9x=3x-3•32x=3x-3+2x=36,
∴x-3+2x=6,
解得x=3.
故答案为:3.
【点睛】
此题考查同底数幂的乘法以及幂的乘方与积的乘方,关键是等式两边均化为底数均为3的幂进行计算.
2、##
【解析】
【分析】
移项合并化系数为1即可.
【详解】
.
移项合并同类项,得:.
化系数为.
故答案为:.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查一次不等式的解法,掌握一般步骤是关键,属于基础题.
3、五
【解析】
【分析】
根据过多边形的一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,计算可求解.
【详解】
解:设这是个n边形,由题意得
n-2=3,
∴n=5,
故答案为:五.
【点睛】
本题主要考查多边形的对角线,掌握多边形对角线的性质是解题的关键.
4、64
【解析】
【分析】
根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.
【详解】
解:∵两个相似多边形的周长比是3:4,
∴两个相似多边形的相似比是3:4,
∴两个相似多边形的面积比是9:16,
∵较小多边形的面积为36cm2,
∴较大多边形的面积为64cm2,
故答案为:64.
【点睛】
本题考查了相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.
5、 4 或5或4
【解析】
【分析】
(1)根据矩形的性质得到CD=cm,,求出DQ=(8-t)cm,由四边形APQD是矩形时,得到t=8-t,求出t值;
(2)连接PC,求出AP=PC=tcm,PB=(8-t)cm,由勾股定理得,即,求解即可;
(3)由勾股定理求出AC=10cm,证明△OAP≌△OCQ,得到OA=OC=5cm,分三种情况:当AP=OP时,过点P作PN⊥AO于N,证明△NAP∽△BAC,得到,求出t=;当AP=AO=5cm时,t=5;当OP=AO=5cm时,过点O作OG⊥AB于G,证明△OAG∽△CAB,得到,代入数值求出t.
【详解】
解:(1)由题意得AP=CQ=t,
∵在矩形ABCD中,cm,cm.
∴CD=cm,,
∴DQ=(8-t)cm,
当四边形APQD是矩形时,AP=DQ,
∴t=8-t,
解得t=4,
故答案为:4;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)连接PC,
∵四边形APCQ是菱形,
∴AP=PC=tcm,PB=(8-t)cm,
∵在矩形ABCD中,∠B=90°,
∴,
∴,
解得,
故答案为:;
(3)∵∠B=90°,cm,cm.
∴AC=10cm,
∵,
∴∠OAP=∠OCQ,∠OPA=∠OQC,
∴△OAP≌△OCQ,
∴OA=OC=5cm,
分三种情况:
当AP=OP时,过点P作PN⊥AO于N,则AN=ON=2.5cm,
∵∠NAP=∠BAC,∠ANP=∠B,
∴△NAP∽△BAC,
∴,
∴,
解得t=;
当AP=AO=5cm时,t=5;
当OP=AO=5cm时,过点O作OG⊥AB于G,则,
∵∠OAG=∠BAC,∠OGA=∠B,
∴△OAG∽△CAB,
∴,
∴,
解得t=4,
故答案为:或5或4.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此题考查了矩形的性质,菱形的性质,等腰三角形的性质,勾股定理,相似三角形的判定及性质,熟记各知识点并应用解决问题是解题的关键.
三、解答题
1、
(1);
(2)
(3)①;②-2
【分析】
(1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;
(2)由(1)直接可得关系式;
(3)①由(a-b)2=a2+b2-2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021-a=x,a-2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=-2,再求(2021-a)(a-2020)=-2即可.
(1)
方法一:∵大正方形的边长为(a+b),
∴S=(a+b)2;
方法二:大正方形是由2个长方形,2个小正方形拼成,
∴S=b2+ab+ab+a2=a2+b2+2ab;
故答案为:(a+b)2,a2+b2+2ab;
(2)
由(1)可得(a+b)2=a2+b2+2ab;
故答案为:(a+b)2=a2+b2+2ab;
(3)
①∵(a-b)2=a2+b2-2ab=13①,
(a+b)2=a2+b2+2ab=25②,
由①-②得,-4ab=-12,
解得:ab=3;
②设2021-a=x,a-2020=y,
∴x+y=1,
∵(2021-a)2+(a-2020)2=5,
∴x2+y2=5,
∵(x+y)2=x2+2xy+y2=1,
∴2xy=1-(x2+y2)=1-5=-4,
解得:xy=-2,
∴(2021-a)(a-2020)=-2.
【点睛】
本题考查完全平方公式的几何背景,熟练掌握正方形、长方形面积的求法,灵活应用完全平方公式的变形是解题的关键.
2、每件商品应降价1元.
【分析】
设每件商品应降价x元,得出降价后的销量及每件的盈利,然后可列出方程,解出即可.
【详解】
解:设每件商品应降价x元,则每天可售出300+20=300+200x件,
由题意得:(2-x)(300+200x)=500,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得:x=(舍去)或x=1.
每件商品应降价1元.
【点睛】
本题考查一元二次方程的应用,关键找到降价和卖的件数的关系,根据利润列方程求解.
3、
(1)答案见解析
(2)答案见解析
【分析】
(1)根据DFBC,得,由AB⋅AF=DF⋅BC,得,∠AFE=∠DFA,可证△AEF∽△DAF,即可得答案;
(2)根据ABCD,得,由,得,再证四边形DFBC是平行四边形,得,最后根据DFBC,即可得答案.
(1)
解:∵DFBC,
∴ ,
∴,
∵AB⋅AF=DF⋅BC,
∴,
∴,
∵∠AFE=∠DFA,
∴△AEF∽△DAF,
∴∠AEF=∠DAF;
(2)
∵ABCD,
∴,
∴,
∵,
∴,
∴,
∵DFBC,ABCD,
∴四边形DFBC是平行四边形,
∴DF=BC,
∴,
∵DFBC,
∴,
∴.
【点睛】
本题考查了平行线分线段成比例、相似三角形的判定与性质、平行四边形的判定与性质,做题的关键是相似三角形性质的灵活运用.
4、
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)见解析;
(2)能成为直角三角形,=30°或60°
【分析】
(1)由全等三角形的性质可得∠AEF=∠ACB,AE=AC,根据等腰三角形的判定与性质证明∠PEC=∠PCE,PE=PC,然后根据线段垂直平分线的判定定理即可证得结论;
(2)分∠CPN=90°和∠CNP=90°,利用旋转的性质和三角形的内角和定理求解即可.
(1)
证明:∵两块是完全相同的且含角的直角三角板和,
∴AE=AC,∠AEF=∠ACB=30°,∠F=60°,
∴∠AEC=∠ACE,
∴∠AEC-∠AEF=∠ACE-∠ACB,
∴∠PEC=∠PCE,
∴PE=PC,又AE=AC,
∴所在的直线是线段的垂直平分线.
(2)
解:在旋转过程中,能成为直角三角形,
由旋转的性质得:∠FAC= ,
当∠CNP=90°时,∠FNA=90°,又∠F=60°,
∴=∠FAC=180°-∠FNA-∠F=180°-90°-60°=30°;
当∠CPN=90°时,∵∠NCP=30°,
∴∠PNC=180°-90°-30°=60°,即∠FNA=60°,
∵∠F=60°,
∴=∠FAC=180°-∠FNA-∠F=180°-60°-60°=60°,
综上,旋转角的的度数为30°或60°.
【点睛】
本题考查直角三角板的度数、全等三角形的性质、等腰三角形的判定与性质、线段垂直平分线的判定、旋转性质、对顶角相等、三角形的内角和定理,熟练掌握相关知识的联系与运用是解答的关键.
5、
(1)图象见解析;
(2)甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
【分析】
(1)根据乙的步行速度始终不变,且他在途中不休息,即直接连接原点和点(120,9000)即可;
(2)根据图象可判断甲、乙两人在途中相遇3次,分段计算,利用待定系数法结合图象即可求出相遇的时间.
(1)
乙离A地的距离(单位:m)与时间x之间的函数图像,如图即是.
(2)
根据题意结合图象可知甲、乙两人在途中相遇3次.
如图,第一次相遇在AB段,第二次相遇在BC段,第三次相遇在CD段,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据题意可设的解析式为:,
∴,
解得:,
∴的解析式为.
∵甲的步行速度为100m/min,他每走半个小时就休息15min,
∴甲第一次休息时走了米,
对于,当时,即,
解得:.
故第一次相遇的时间为40分钟的时候;
设BC段的解析式为:,
根据题意可知B(45,3000),D (75,6000).
∴,
解得:,
故BC段的解析式为:.
相遇时即,故有,
解得:.
故第二次相遇的时间为60分钟的时候;
对于,当时,即,
解得:.
故第三次相遇的时间为80分钟的时候;
综上,甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
【点睛】
本题考查一次函数的实际应用.理解题意,掌握利用待定系数法求函数解析式是解答本题的关键.
x
-1
0
1
2
3
-8
-4
0
4
8
【中考特训】湖南省怀化市中考数学三年高频真题汇总 卷(Ⅲ)(含答案及详解): 这是一份【中考特训】湖南省怀化市中考数学三年高频真题汇总 卷(Ⅲ)(含答案及详解),共31页。试卷主要包含了如图,A,生活中常见的探照灯等内容,欢迎下载使用。
【中考特训】湖南省株洲市中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解): 这是一份【中考特训】湖南省株洲市中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解),共28页。试卷主要包含了下列现象,如图,某汽车离开某城市的距离y等内容,欢迎下载使用。
【中考特训】湖南省岳阳市中考数学三年高频真题汇总卷(含答案及详解): 这是一份【中考特训】湖南省岳阳市中考数学三年高频真题汇总卷(含答案及详解),共27页。试卷主要包含了如图个三角形.,一元二次方程的根为.等内容,欢迎下载使用。