还剩6页未读,
继续阅读
所属成套资源:人教a版必修第二册数学导学案及解析
成套系列资料,整套一键下载
- 第10章概率10.1.2事件的关系和运算学案含解析 学案 0 次下载
- 第10章概率10.1.3古典概型学案含解析 学案 0 次下载
- 第10章概率10.1.4概率的基本性质学案含解析 学案 0 次下载
- 第10章概率10.3.1频率的稳定性学案含解析 学案 0 次下载
- 全书要点速记学案含解析 学案 0 次下载
第10章概率章末综合提升学案含解析
展开
这是一份第10章概率章末综合提升学案含解析,共9页。
概率 类型1 随机事件与概率1.近几年高考突出考查了以频率估计概率,对概率加法公式及对立事件发生的概率考查较少.这三个知识点是概率知识的基础,应重点把握.2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P(eq \x\to(A))求解.当题目涉及“至多”“至少”型问题,多考虑间接法.【例1】 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.[解] (1)P(A)=eq \f(1,1 000),P(B)=eq \f(10,1 000)=eq \f(1,100),P(C)=eq \f(50,1 000)=eq \f(1,20).故事件A,B,C的概率分别为eq \f(1,1 000),eq \f(1,100),eq \f(1,20).(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C. ∵A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=eq \f(1+10+50,1 000)=eq \f(61,1 000).故1张奖券的中奖概率为eq \f(61,1 000).(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,∴P(N)=1-P(A∪B)=1-eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,1 000)+\f(1,100)))=eq \f(989,1 000).故1张奖券不中特等奖且不中一等奖的概率为eq \f(989,1 000).eq \o([跟进训练])1.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是eq \f(1,3),得到黑球或黄球的概率是eq \f(5,12),得到黄球或绿球的概率也是eq \f(5,12),试求得到黑球、黄球和绿球的概率各是多少?[解] 从袋中选取一个球,记事件“得到红球”“得到黑球”“得到黄球”“得到绿球”分别为事件A,B,C,D,则有P(A)=eq \f(1,3),P(B∪C)=P(B)+P(C)=eq \f(5,12),P(C∪D)=P(C)+P(D)=eq \f(5,12),P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)=1-eq \f(1,3)=eq \f(2,3),解得P(B)=eq \f(1,4),P(C)=eq \f(1,6),P(D)=eq \f(1,4),因此得到黑球、黄球、绿球的概率分别是eq \f(1,4),eq \f(1,6),eq \f(1,4). 类型2 古典概型1.古典概型是每年高考的必考点,可以单独考查,也可以与统计中的直方图综合考查.计算时,掌握必要的计数方法(如列举法、树状图等),并合理利用互斥事件、对立事件的概率公式,进行概率计算.2.求古典概型的概率的关键是求试验的样本点的总数和事件A包含的样本点的个数,这就需要正确求出试验的样本空间,样本空间的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择.【例2】 袋中有形状、大小都相同的4个小球, (1)若4个小球中有1只白球,1只红球,2只黄球,从中一次随机摸出2只球,求这2只球颜色不同的概率;(2)若4个小球颜色相同,标号分别为1,2,3,4,从中一次取两球,求标号和为奇数的概率;(3)若4个小球中有1只白球,1只红球,2只黄球,有放回地取球,取两次,求两次取得球的颜色相同的概率.[解] (1)设取出的2只球颜色不同为事件A.试验的样本空间Ω= {(白,红),(白,黄1),(白,黄2),(红,黄1),(红,黄2),(黄1,黄2)},共6个样本点,事件A包含5个样本点,故P(A)=eq \f(5,6).(2)试验的样本空间Ω= {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},共6个样本点,设标号和为奇数为事件B,则B包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以P(B)=eq \f(4,6)=eq \f(2,3).(3)试验的样本空间Ω={(白,白),(白,红),(白,黄1),(白,黄2),(红,红),(红,白),(红,黄1),(红,黄2),(黄1,黄1),(黄1,白),(黄1,红),(黄1,黄2),(黄2,黄2),(黄2,白),(黄2,红),(黄2,黄1)},共16个样本点,其中颜色相同的有6个,故所求概率为P=eq \f(6,16)=eq \f(3,8).eq \o([跟进训练])2.设连续掷两次骰子得到的点数分别为m,n,令平面向量a=(m,n),b=(1,-3).(1)求使得事件“a⊥b”发生的概率;(2)求使得事件“|a|≤|b|”发生的概率.[解] (1)由题意知,m∈{1,2,3,4,5,6},n∈{1,2,3,4,5,6},故(m,n)所有可能的取法共36种.a⊥b,即m-3n=0,即m=3n,共有2种:(3,1),(6,2),所以事件a⊥b的概率为eq \f(2,36)=eq \f(1,18).(2)|a|≤|b|,即m2+n2≤10,共有6种:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),其概率为eq \f(6,36)=eq \f(1,6). 类型3 事件的相互独立性1.高考对相互独立事件的考查主要是判断相互独立事件、计算相互独立事件的概率,多出现在解答题,难度中等.2.相互独立事件中求复杂事件概率的解题思路(1)将待求复杂事件转化为几个彼此互斥的简单事件的和.(2)将彼此互斥简单事件中的简单事件,转化为几个已知(易求)概率的相互独立事件的积事件.(3)代入概率的积、和公式求解.【例3】 在一场娱乐晚会上,有5位民间歌手(1到5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求“X≥2”的事件概率.[解] (1)设A表示事件“观众甲选中3号歌手”,观众甲选出3名歌手的样本空间Ω={(1,3,4),(1,3,5),(1,4,5)},事件A包含2个样本点,则P(A)=eq \f(2,3),设B表示事件“观众乙选中3号歌手”, 观众乙选出3名歌手的样本空间Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)},事件B包含6个样本点,则P(B)=eq \f(6,10)=eq \f(3,5).∵事件A与B相互独立,A与eq \x\to(B)相互独立,则Aeq \x\to(B)表示事件“甲选中3号歌手,且乙没选中3号歌手”.∴P(Aeq \x\to(B))=P(A)·P(eq \x\to(B))=P(A)·[1-P(B)]=eq \f(2,3)×eq \f(2,5)=eq \f(4,15).即观众甲选中3号歌手且观众乙未选中3号歌手的概率是eq \f(4,15).(2)设C表示事件“观众丙选中3号歌手”,则P(C)=P(B)=eq \f(3,5),依题意,A,B,C相互独立,eq \x\to(A),eq \x\to(B),eq \x\to(C)相互独立,且ABeq \x\to(C),Aeq \x\to(B)C,eq \x\to(A)BC,ABC彼此互斥.又P(X=2)=P(ABeq \x\to(C))+P(Aeq \x\to(B)C)+P(eq \x\to(A)BC)=eq \f(2,3)×eq \f(3,5)×eq \f(2,5)+eq \f(2,3)×eq \f(2,5)×eq \f(3,5)+eq \f(1,3)×eq \f(3,5)×eq \f(3,5)=eq \f(33,75),P(X=3)=P(ABC)=eq \f(2,3)×eq \f(3,5)×eq \f(3,5)=eq \f(18,75),∴P(X≥2)=P(X=2)+P(X=3)=eq \f(33,75)+eq \f(18,75)=eq \f(17,25).eq \o([跟进训练])3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数为奇数”为事件B,则事件A,B中至少有一件发生的概率是( )A.eq \f(5,12) B.eq \f(1,2) C.eq \f(7,12) D.eq \f(3,4)D [P(A)=eq \f(1,2),P(B)=eq \f(1,2),P(eq \x\to(A))=eq \f(1,2),P(eq \x\to(B))=eq \f(1,2).A,B中至少有一件发生的概率为1-P(eq \x\to(A))·P(eq \x\to(B))=1-eq \f(1,2)×eq \f(1,2)=eq \f(3,4),故选D.]4.(2020·天津高考)已知甲、乙两球落入盒子的概率分别为eq \f(1,2)和eq \f(1,3).假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为________;甲、乙两球至少有一个落入盒子的概率为________.eq \f(1,6) eq \f(2,3) [依题意得,甲、乙两球都落入盒子的概率为eq \f(1,2)×eq \f(1,3)=eq \f(1,6),甲、乙两球都不落入盒子的概率为eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3)))=eq \f(1,3),则甲、乙两球至少有一个落入盒子的概率为1-eq \f(1,3)=eq \f(2,3).] 类型4 概率与统计的综合应用1.此类问题多涉及古典概型、互斥事件、对立事件以及频率分布直方图等内容,既有选择题,也有解答题.2.破解概率与统计图表综合问题的三个步骤第一步:会读图,能读懂已知统计图表所隐含的信息,并会进行信息提取.第二步:会转化,对文字语言较多的题目,需要根据题目信息耐心阅读,步步实现文字语言与符号语言间的转化.第三步:会运算,对统计图表所反馈的信息进行提取后,结合古典概型的概率公式进行运算.【例4】 某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.[解] (1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,试验的样本空间Ω={(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2)},共10个样本点.又因为所抽取2人的评分都在[40,50)的结果有1种,即(B1,B2),故所求的概率为eq \f(1,10).eq \o([跟进训练])5.海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层随机抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.[解] (1)因为样本容量与总体中的个体数的比是eq \f(6,50+150+100)=eq \f(1,50),所以样本中包含三个地区的个体数量分别是50×eq \f(1,50)=1,150×eq \f(1,50)=3,100×eq \f(1,50)=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取2件商品,试验的样本空间Ω={(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2),共15个样本点.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的样本点有:(B1,B2),(B1,B3),(B2,B3),(C1,C2),共4个,所以P(D)=eq \f(4,15),即这2件商品来自相同地区的概率为eq \f(4,15).1.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3 B.0.4 C.0.6 D.0.7B [设“只用现金支付”为事件A,“既用现金支付也用非现金支付”为事件B,“不用现金支付”为事件C,则P(C)=1-P(A)-P(B)=1-0.45-0.15=0.4.故选B.]2.(2019·全国卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.eq \f(2,3) B.eq \f(3,5) C.eq \f(2,5) D.eq \f(1,5)B [设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为eq \f(6,10)=eq \f(3,5).故选B.]3.(2020·全国卷Ⅰ)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为( )A.eq \f(1,5) B.eq \f(2,5) C.eq \f(1,2) D.eq \f(4,5)A [根据题意作出图形,如图所示,在O,A,B,C,D中任取3点,有10种可能情况,分别为(OAB),(OAC),(OAD),(OBC),(OBD),(OCD),(ABC),(ABD),(ACD),(BCD),其中取到的3点共线有(OAC)和(OBD)2种可能情况,所以在O,A,B,C,D中任取3点,取到的3点共线的概率为eq \f(2,10)=eq \f(1,5),故选A.]4.(2019·全国卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.0.18 [记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.]5.(2020·全国卷Ⅰ)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?[解] (1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为eq \f(40,100)=0.4;乙分厂加工出来的一件产品为A级品的概率的估计值为eq \f(28,100)=0.28.(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为因此甲分厂加工出来的100件产品的平均利润为eq \f(65×40+25×20-5×20-75×20,100)=15.由数据知乙分厂加工出来的100件产品利润的频数分布表为因此乙分厂加工出来的100件产品的平均利润为eq \f(70×28+30×17+0×34-70×21,100)=10.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.地区ABC数量/件50150100等级ABCD频数40202020等级ABCD频数28173421利润6525-5-75频数40202020利润70300-70频数28173421
概率 类型1 随机事件与概率1.近几年高考突出考查了以频率估计概率,对概率加法公式及对立事件发生的概率考查较少.这三个知识点是概率知识的基础,应重点把握.2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P(eq \x\to(A))求解.当题目涉及“至多”“至少”型问题,多考虑间接法.【例1】 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.[解] (1)P(A)=eq \f(1,1 000),P(B)=eq \f(10,1 000)=eq \f(1,100),P(C)=eq \f(50,1 000)=eq \f(1,20).故事件A,B,C的概率分别为eq \f(1,1 000),eq \f(1,100),eq \f(1,20).(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C. ∵A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=eq \f(1+10+50,1 000)=eq \f(61,1 000).故1张奖券的中奖概率为eq \f(61,1 000).(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,∴P(N)=1-P(A∪B)=1-eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,1 000)+\f(1,100)))=eq \f(989,1 000).故1张奖券不中特等奖且不中一等奖的概率为eq \f(989,1 000).eq \o([跟进训练])1.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是eq \f(1,3),得到黑球或黄球的概率是eq \f(5,12),得到黄球或绿球的概率也是eq \f(5,12),试求得到黑球、黄球和绿球的概率各是多少?[解] 从袋中选取一个球,记事件“得到红球”“得到黑球”“得到黄球”“得到绿球”分别为事件A,B,C,D,则有P(A)=eq \f(1,3),P(B∪C)=P(B)+P(C)=eq \f(5,12),P(C∪D)=P(C)+P(D)=eq \f(5,12),P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)=1-eq \f(1,3)=eq \f(2,3),解得P(B)=eq \f(1,4),P(C)=eq \f(1,6),P(D)=eq \f(1,4),因此得到黑球、黄球、绿球的概率分别是eq \f(1,4),eq \f(1,6),eq \f(1,4). 类型2 古典概型1.古典概型是每年高考的必考点,可以单独考查,也可以与统计中的直方图综合考查.计算时,掌握必要的计数方法(如列举法、树状图等),并合理利用互斥事件、对立事件的概率公式,进行概率计算.2.求古典概型的概率的关键是求试验的样本点的总数和事件A包含的样本点的个数,这就需要正确求出试验的样本空间,样本空间的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择.【例2】 袋中有形状、大小都相同的4个小球, (1)若4个小球中有1只白球,1只红球,2只黄球,从中一次随机摸出2只球,求这2只球颜色不同的概率;(2)若4个小球颜色相同,标号分别为1,2,3,4,从中一次取两球,求标号和为奇数的概率;(3)若4个小球中有1只白球,1只红球,2只黄球,有放回地取球,取两次,求两次取得球的颜色相同的概率.[解] (1)设取出的2只球颜色不同为事件A.试验的样本空间Ω= {(白,红),(白,黄1),(白,黄2),(红,黄1),(红,黄2),(黄1,黄2)},共6个样本点,事件A包含5个样本点,故P(A)=eq \f(5,6).(2)试验的样本空间Ω= {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},共6个样本点,设标号和为奇数为事件B,则B包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以P(B)=eq \f(4,6)=eq \f(2,3).(3)试验的样本空间Ω={(白,白),(白,红),(白,黄1),(白,黄2),(红,红),(红,白),(红,黄1),(红,黄2),(黄1,黄1),(黄1,白),(黄1,红),(黄1,黄2),(黄2,黄2),(黄2,白),(黄2,红),(黄2,黄1)},共16个样本点,其中颜色相同的有6个,故所求概率为P=eq \f(6,16)=eq \f(3,8).eq \o([跟进训练])2.设连续掷两次骰子得到的点数分别为m,n,令平面向量a=(m,n),b=(1,-3).(1)求使得事件“a⊥b”发生的概率;(2)求使得事件“|a|≤|b|”发生的概率.[解] (1)由题意知,m∈{1,2,3,4,5,6},n∈{1,2,3,4,5,6},故(m,n)所有可能的取法共36种.a⊥b,即m-3n=0,即m=3n,共有2种:(3,1),(6,2),所以事件a⊥b的概率为eq \f(2,36)=eq \f(1,18).(2)|a|≤|b|,即m2+n2≤10,共有6种:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),其概率为eq \f(6,36)=eq \f(1,6). 类型3 事件的相互独立性1.高考对相互独立事件的考查主要是判断相互独立事件、计算相互独立事件的概率,多出现在解答题,难度中等.2.相互独立事件中求复杂事件概率的解题思路(1)将待求复杂事件转化为几个彼此互斥的简单事件的和.(2)将彼此互斥简单事件中的简单事件,转化为几个已知(易求)概率的相互独立事件的积事件.(3)代入概率的积、和公式求解.【例3】 在一场娱乐晚会上,有5位民间歌手(1到5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求“X≥2”的事件概率.[解] (1)设A表示事件“观众甲选中3号歌手”,观众甲选出3名歌手的样本空间Ω={(1,3,4),(1,3,5),(1,4,5)},事件A包含2个样本点,则P(A)=eq \f(2,3),设B表示事件“观众乙选中3号歌手”, 观众乙选出3名歌手的样本空间Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)},事件B包含6个样本点,则P(B)=eq \f(6,10)=eq \f(3,5).∵事件A与B相互独立,A与eq \x\to(B)相互独立,则Aeq \x\to(B)表示事件“甲选中3号歌手,且乙没选中3号歌手”.∴P(Aeq \x\to(B))=P(A)·P(eq \x\to(B))=P(A)·[1-P(B)]=eq \f(2,3)×eq \f(2,5)=eq \f(4,15).即观众甲选中3号歌手且观众乙未选中3号歌手的概率是eq \f(4,15).(2)设C表示事件“观众丙选中3号歌手”,则P(C)=P(B)=eq \f(3,5),依题意,A,B,C相互独立,eq \x\to(A),eq \x\to(B),eq \x\to(C)相互独立,且ABeq \x\to(C),Aeq \x\to(B)C,eq \x\to(A)BC,ABC彼此互斥.又P(X=2)=P(ABeq \x\to(C))+P(Aeq \x\to(B)C)+P(eq \x\to(A)BC)=eq \f(2,3)×eq \f(3,5)×eq \f(2,5)+eq \f(2,3)×eq \f(2,5)×eq \f(3,5)+eq \f(1,3)×eq \f(3,5)×eq \f(3,5)=eq \f(33,75),P(X=3)=P(ABC)=eq \f(2,3)×eq \f(3,5)×eq \f(3,5)=eq \f(18,75),∴P(X≥2)=P(X=2)+P(X=3)=eq \f(33,75)+eq \f(18,75)=eq \f(17,25).eq \o([跟进训练])3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数为奇数”为事件B,则事件A,B中至少有一件发生的概率是( )A.eq \f(5,12) B.eq \f(1,2) C.eq \f(7,12) D.eq \f(3,4)D [P(A)=eq \f(1,2),P(B)=eq \f(1,2),P(eq \x\to(A))=eq \f(1,2),P(eq \x\to(B))=eq \f(1,2).A,B中至少有一件发生的概率为1-P(eq \x\to(A))·P(eq \x\to(B))=1-eq \f(1,2)×eq \f(1,2)=eq \f(3,4),故选D.]4.(2020·天津高考)已知甲、乙两球落入盒子的概率分别为eq \f(1,2)和eq \f(1,3).假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为________;甲、乙两球至少有一个落入盒子的概率为________.eq \f(1,6) eq \f(2,3) [依题意得,甲、乙两球都落入盒子的概率为eq \f(1,2)×eq \f(1,3)=eq \f(1,6),甲、乙两球都不落入盒子的概率为eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3)))=eq \f(1,3),则甲、乙两球至少有一个落入盒子的概率为1-eq \f(1,3)=eq \f(2,3).] 类型4 概率与统计的综合应用1.此类问题多涉及古典概型、互斥事件、对立事件以及频率分布直方图等内容,既有选择题,也有解答题.2.破解概率与统计图表综合问题的三个步骤第一步:会读图,能读懂已知统计图表所隐含的信息,并会进行信息提取.第二步:会转化,对文字语言较多的题目,需要根据题目信息耐心阅读,步步实现文字语言与符号语言间的转化.第三步:会运算,对统计图表所反馈的信息进行提取后,结合古典概型的概率公式进行运算.【例4】 某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.[解] (1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,试验的样本空间Ω={(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2)},共10个样本点.又因为所抽取2人的评分都在[40,50)的结果有1种,即(B1,B2),故所求的概率为eq \f(1,10).eq \o([跟进训练])5.海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层随机抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.[解] (1)因为样本容量与总体中的个体数的比是eq \f(6,50+150+100)=eq \f(1,50),所以样本中包含三个地区的个体数量分别是50×eq \f(1,50)=1,150×eq \f(1,50)=3,100×eq \f(1,50)=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取2件商品,试验的样本空间Ω={(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2),共15个样本点.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的样本点有:(B1,B2),(B1,B3),(B2,B3),(C1,C2),共4个,所以P(D)=eq \f(4,15),即这2件商品来自相同地区的概率为eq \f(4,15).1.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3 B.0.4 C.0.6 D.0.7B [设“只用现金支付”为事件A,“既用现金支付也用非现金支付”为事件B,“不用现金支付”为事件C,则P(C)=1-P(A)-P(B)=1-0.45-0.15=0.4.故选B.]2.(2019·全国卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.eq \f(2,3) B.eq \f(3,5) C.eq \f(2,5) D.eq \f(1,5)B [设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为eq \f(6,10)=eq \f(3,5).故选B.]3.(2020·全国卷Ⅰ)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为( )A.eq \f(1,5) B.eq \f(2,5) C.eq \f(1,2) D.eq \f(4,5)A [根据题意作出图形,如图所示,在O,A,B,C,D中任取3点,有10种可能情况,分别为(OAB),(OAC),(OAD),(OBC),(OBD),(OCD),(ABC),(ABD),(ACD),(BCD),其中取到的3点共线有(OAC)和(OBD)2种可能情况,所以在O,A,B,C,D中任取3点,取到的3点共线的概率为eq \f(2,10)=eq \f(1,5),故选A.]4.(2019·全国卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.0.18 [记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.]5.(2020·全国卷Ⅰ)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?[解] (1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为eq \f(40,100)=0.4;乙分厂加工出来的一件产品为A级品的概率的估计值为eq \f(28,100)=0.28.(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为因此甲分厂加工出来的100件产品的平均利润为eq \f(65×40+25×20-5×20-75×20,100)=15.由数据知乙分厂加工出来的100件产品利润的频数分布表为因此乙分厂加工出来的100件产品的平均利润为eq \f(70×28+30×17+0×34-70×21,100)=10.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.地区ABC数量/件50150100等级ABCD频数40202020等级ABCD频数28173421利润6525-5-75频数40202020利润70300-70频数28173421
相关资料
更多