2024年陕西省中考数学模拟试卷22
展开
这是一份2024年陕西省中考数学模拟试卷22,共35页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(每小题 3 分,共 10 小题,合计 30 分)
1.的平方是( )
A.B.C.D.2
2.如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是( )
A.B.C.D.
3.某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为( )
A.23cmB.24cmC.25cmD.26cm
4.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为( )
A.37°B.43°
C.53°D.54°
5.分式化简后的结果为( )
A.B.C.D.
6.如图,在中,于点D,.若E,F分别为,的中点,则的长为( )
B.
C.1D.
7.如图,直线经过点,当时,则的取值范围为( )
B.
C.D.
8.如图,矩形ABCD中,,,且BE与DF之间的距离为3,则AE的长是
B.
C.D.
9.如图,点在上,,垂足为E.若,,则( )
A.2B.4
C.D.
10.抛物线与x轴的一个交点坐标为,对称轴是直线,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是( )
B.
C.D.
二、填空题:(每小题 3 分,共 4 小题,合计 12 分)
11.四个数-1,0,,中,为无理数的是_________.
12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.
a一个零件的形状如图所示,,则的度数是 .
b: .
(12a图) (13题图)
13.如图,在平面直角坐标系中,一次函数的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形,且点C在反比例函数的图象上,则k的值为 。
14.如图,四边形是菱形,对角线,相交于点,,,点是上一点,连接,若,则的长是
三、解答题:本大题共 11 个小题,满分 78 分.
15.计算:
16.解方程:.
17.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)
18.从甲、乙两班各随机抽取10名学生(共20人)参加数学素养测试,将测试成绩分为如下的5组(满分为100分):A组:50≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100,分别制成频数分布直方图和扇形统计图如图.
(1)根据图中数据,补充完整频数分布直方图并估算参加测试的学生的平均成绩(取各组成绩的下限与上限的中间值近似的表示该组学生的平均成绩);
(2)参加测试的学生被随机安排到4个不同的考场,其中小亮、小刚两名同学都参加测试;用树状图或列表法求小亮、小刚两名同学被分在不同考场的概率;
(3)若甲、乙两班参加测试的学生成绩统计如下:
甲班:62,64,66,76,76,77,82,83,83,91;
乙班:51,52,69,70,71,71,88,89,99,100.
则可计算得两班学生的样本平均成绩为x甲=76,x乙=76;样本方差为s甲2=80,s乙2=275.4.请用学过的统计知识评判甲、乙两班的数学素养总体水平并说明理由.
19.如图,四边形是菱形,点、分别在边、的延长线上,且.连接、.求证:.
20.越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角 (点A,D与N在一条直线上),求电池板离地面的高度的长.(结果精确到1米;参考数据:)
我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的,应如何购买才能使总费用最少?并求出最少费用.
22.某品牌免洗洗手液按剂型分为凝胶型、液体型,泡沫型三种型号(分别用A,B,C依次表示这三种型号).小辰和小安计划每人购买一瓶该品牌免洗洗手液,上述三种型号中的每一种免洗洗手液被选中的可能性均相同.
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是__________.
(2)请你用列表法或画树状图法,求小辰和小安选择同一种型号免洗洗手液的概率.
23.如图,内接于,是的直径,为上一点,,延长交于点,.
(1)求证:是的切线;
(2)若,,求的长.
24.在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0).
(1)求这个二次函数的表达式;
(2)求当﹣2≤x≤1时,y的最大值与最小值的差;
(3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.
25.在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC,交射线CA于点F.请解答下列问题:
(1)当点E在线段AB上,CD是△ACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)
(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;
(3)在(1)、(2)的条件下,若DE=2AE=6,则CF=
2024年陕西省中考数学模拟试卷
满分:120 分 版本:北师大版
一、选择题(每小题 3 分,共 10 小题,合计 30 分)
1.的平方是( )
A.B.C.D.2
【答案】D
【解析】
【分析】
先计算,然后再计算平方.
【详解】
∵
∴
故选:D.
【点睛】
本题考查了绝对值和平方的计算,按照顺序进行计算即可.
2.如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是( )
A.B.C.D.
【答案】C
【解析】
【分析】
找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
【详解】
从上面看,是一个矩形,矩形的中间是一个圆.
故选:C.
【点睛】
本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.
3.某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为( )
A.23cmB.24cmC.25cmD.26cm
【答案】B
【分析】
设,分别将和代入求出一次函数解析式,把代入即可求解.
【详解】
解:设,分别将和代入可得:
,
解得 ,
∴,
当时,,
故选:B.
【点睛】
本题考查一次函数的应用,掌握用待定系数法求解析式是解题的关键.
4.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为( )
A.37°B.43°C.53°D.54°
【答案】C
【解析】
【分析】
先根据平行线的性质得出,再根据即可求解.
【详解】
∵AB∥CD,
∴∠2=∠3=37°,
∵∠FEG=90°,
∴
∴∠1=90°-∠3=90°-37°=53°
故选:C.
【点睛】
本题主要考查平行线的性质和平角的定义,掌握平行线的性质是解题的关键.
5.分式化简后的结果为( )
A.B.C.D.
【答案】B
【解析】
【分析】
根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算.
【详解】
解:
故选:B.
【点睛】
本题主要考查了分式的加减,熟练掌握分式通分的方法是解答本题的关键.
6.如图,在中,于点D,.若E,F分别为,的中点,则的长为( )
A.B.C.1D.
【答案】C
【分析】
根据条件可知△ABD为等腰直角三角形,则BD=AD,△ADC是30°、60°的直角三角形,可求出AC长,再根据中位线定理可知EF=。
【详解】
解:因为AD垂直BC,
则△ABD和△ACD都是直角三角形,
又因为
所以AD=,
因为sin∠C=,
所以AC=2,
因为EF为△ABC的中位线,
所以EF==1,
故选:C.
【点睛】
本题主要考查了等腰直角三角形、锐角三角形函数值、中位线相关知识,根据条件分析利用定理推导,是解决问题的关键.
7.如图,直线经过点,当时,则的取值范围为( )
A.B.C.D.
【答案】A
【解析】
【分析】
将代入,可得,再将变形整理,得,求解即可.
【详解】
解:由题意将代入,可得,即,
整理得,,
∴,
由图像可知,
∴,
∴,
故选:A.
【点睛】
本题考查了一次函数的图像和性质,解题关键在于灵活应用待定系数法和不等式的性质.
8.如图,矩形ABCD中,,,且BE与DF之间的距离为3,则AE的长是
A.B.C.D.
【答案】C
【解析】
【分析】
如图,过点D作,垂足为G,则,首先证明≌,由全等三角形的性质可得到,设,则,在中依据勾股定理列方程求解即可.
【详解】
如图所示:过点D作,垂足为G,则,
,,,
≌,
,
设,则,
在中,,,解得:,
故选C.
【点睛】
本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x的方程是解题的关键.
9.如图,点在上,,垂足为E.若,,则( )
A.2B.4C.D.
【答案】D
【解析】
【分析】
连接OC,根据圆周角定理求得,在中可得,可得OC的长度,故CE长度可求得,即可求解.
【详解】
解:连接OC,
∵,
∴,
在中,,
∴,
∴
∵,
∴,
∴
∵,垂足为E,
∴,
故选:D.
【点睛】
本题考查圆周角定理和垂径定理,作出合适的辅助线是解题的关键.
10.抛物线与x轴的一个交点坐标为,对称轴是直线,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是( )
A.B.C.D.
【答案】B
【解析】
【分析】
由函数的对称性可得结论.
【详解】
解:设此抛物线与x轴的另一个交点坐标为(x,0),
∵抛物线与x轴的一个交点坐标为,对称轴是直线,
∴,解得x=3,
此抛物线与x轴的另一个交点坐标为(3,0),
故选:B.
【点睛】
此题主要考查了二次函数的图象与性质,熟练掌握二次函数的对称性是解答此题的关键.
二、填空题:(每小题 3 分,共 4 小题,合计 12 分)
11.四个数-1,0,,中,为无理数的是_________.
【答案】
【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.
【详解】解:-1,0,是有理数;是无理数;故答案为:.
【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围内常见的无理数有三类:①π类,如2π,π3等;②开方开不尽的数,如等;③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.
12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.
a一个零件的形状如图所示,,则的度数是
【答案】80°
【解析】
【分析】
延长DE与BC交于点F,则四边形ABFD是平行四边形,则∠A=∠F,利用三角形内角和定理,即可求出答案.
【详解】
解:延长DE与BC交于点F,如图:
∵,
∴四边形ABFD是平行四边形,
∴∠A=∠F,
在△BDF中,,
∴,
∴∠A=80°;
【点睛】
本题考查了平行四边形的性质,三角形的内角和定理,解题的关键是正确作出辅助线,求出∠F的度数.
b:______
【答案】
【解析】
【分析】
特殊角的三角函数值【详解】
解:1,
2×=,
故答案为:,【点睛】
本题考查了特殊角的三角函数值,
13.如图,在平面直角坐标系中,一次函数的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形,且点C在反比例函数的图象上,则k的值为
【答案】
【解析】
【分析】
过点C作CE⊥x轴于E,证明△AOB≌△BEC,可得点C坐标,代入求解即可;
【详解】
解:∵当x=0时,,∴A(0,4), ∴OA=4;
∵当y=0时,,∴x=-3,∴B(-3,0), ∴OB=3;
过点C作CE⊥x轴于E,
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC,
∵∠CBE+∠ABO=90°,∠BAO+∠ABO=90°,
∴∠CBE =∠BAO.
在△AOB和△BEC中,
,
∴△AOB≌△BEC,
∴BE=AO=4,CE=OB=3,
∴OE=3+4=7,
∴C点坐标为(-7,3),
∵点A在反比例函数的图象上,
∴k=-7×3=-21.
故选D.
【点睛】
本题考查了一次函数与坐标轴的交点、待定系数法求函数解析式、正方形的性质,以及全等三角形的判定与性质,解答此题的关键是正确作出辅助线及数形结合思想的运用.
如图,四边形是菱形,对角线,相交于点,,,点是上一点,连接,若,则的长是
【答案】
【解析】
【分析】
根据菱形的对角线互相垂直平分求出OB,OC,AC⊥BD,再利用勾股定理列式求出BC,然后根据等腰三角形的性质结合直角三角形两个锐角互余的关系求解即可.
【详解】
∵菱形ABCD的对角线AC、BD相交于点O,
∴OA=OC=AC=4,OB=OD=BD=3,AC⊥BD,
由勾股定理得,CD=,
∵OE=CE,
∴∠EOC=∠ECO,
∵∠EOC+∠EOD =∠ECO+∠EDO=90,
∴∠EOD =∠EDO,
∴OE=ED,
∴OE=ED=CE,
∴OE=CD=.
【点睛】
本题考查了菱形的性质,等腰三角形的判定和性质,直角三角形两个锐角互余,勾股定理,熟记性质与定理是解题的关键.
三、解答题:本大题共 11 个小题,满分 78 分.
15.计算:
【答案】.
【解析】
【分析】
先计算平方差公式、特殊角的正切函数值、零指数幂,再计算实数的混合运算即可.
【详解】
原式
.
【点睛】
本题考查了平方差公式、特殊角的正切函数值、零指数幂等知识点,熟记各运算法则是解题关键.
16.解方程:.
【答案】x=2
【解析】方程两边都乘以(x+1)(x–1),
去分母得x(x+1)–(x2–1)=3,
即x2+x–x2+1=3,
解得x=2.
检验:当x=2时,(x+1)(x–1)=(2+1)(2–1)=3≠0,
∴x=2是原方程的解,
故原分式方程的解是x=2.
【名师点睛】本题考查了分式方程的求解,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
17.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)
【分析】:要满足条件:在BC边上求作一点P,使得点P到AC的距离等于BP的长,则DP为∠BDC的角平分线.
【答案】解:如图所示,点P即为所求.
18.从甲、乙两班各随机抽取10名学生(共20人)参加数学素养测试,将测试成绩分为如下的5组(满分为100分):A组:50≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100,分别制成频数分布直方图和扇形统计图如图.
(1)根据图中数据,补充完整频数分布直方图并估算参加测试的学生的平均成绩(取各组成绩的下限与上限的中间值近似的表示该组学生的平均成绩);
(2)参加测试的学生被随机安排到4个不同的考场,其中小亮、小刚两名同学都参加测试;用树状图或列表法求小亮、小刚两名同学被分在不同考场的概率;
(3)若甲、乙两班参加测试的学生成绩统计如下:
甲班:62,64,66,76,76,77,82,83,83,91;
乙班:51,52,69,70,71,71,88,89,99,100.
则可计算得两班学生的样本平均成绩为x甲=76,x乙=76;样本方差为s甲2=80,s乙2=275.4.请用学过的统计知识评判甲、乙两班的数学素养总体水平并说明理由.
【答案】(1)图见解析;平均成绩为76.5;(2);(3)甲班的数学素养总体水平好.
【分析】
(1)由D组所占百分比求出D组的人数,再根据A、B、E、D组的人数求出C组人数,即可补全频数分布直方图,再求出样本平均数即可;
(2)画树状图,共有16种等可能的结果,小亮、小刚两名同学被分在不同考场的结果有12种,再由概率公式求解即可;
(3)由两班样本方差的大小作出判断即可.
【详解】
解:(1)D组人数为:20×25%=5(人),C组人数为:20﹣(2+4+5+3)=6(人),
补充完整频数分布直方图如下:
估算参加测试的学生的平均成绩为:76.5(分);
(2)把4个不同的考场分别记为:1、2、3、4,
画树状图如图:
共有16种等可能的结果,小亮、小刚两名同学被分在不同考场的结果有12种,
∴小亮、小刚两名同学被分在不同考场的概率为;
(3)∵样本方差为s甲2=80,s乙2=275.4,
∴s甲2<s乙2,
∴甲班的成绩稳定,
∴甲班的数学素养总体水平好.
【点睛】
本题考查了用列表法或画树状图法求概率以及频数分布直方图和扇形统计图等知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
19.如图,四边形是菱形,点、分别在边、的延长线上,且.连接、.求证:.
【答案】见解析
【分析】
根据菱形的性质得到BC=CD,∠ADC=∠ABC,根据SAS证明△BEC≌△DFC,可得CE=CF.
【详解】
解:∵四边形ABCD是菱形,
∴BC=CD,∠ADC=∠ABC,
∴∠CDF=∠CBE,
在△BEC和△DFC中,
,
∴△BEC≌△DFC(SAS),
∴CE=CF.
【点睛】
本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是根据菱形得到判定全等的条件.
20.越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角 (点A,D与N在一条直线上),求电池板离地面的高度的长.(结果精确到1米;参考数据:)
【答案】8米
【分析】
过E作EF⊥MN于F,连接EB,设MF=x米,可证四边形FNDE,四边形FNAB均是矩形,设MF=EF=x,可求FB= x+3.5,由tan∠MBF=,解得 米,可求MN=MF+FN=6.5+1.6≈8米.
【详解】
解:过E作EF⊥MN于F,连接EB,设MF=x米,
∵∠EFN=∠FND=∠EDN=∠A=90°,
∴四边形FNDE,四边形FNAB均是矩形,
∴FN=ED=AB=1.6米,AD=BE=3.5米,
∵∠MEF=45°,∠EFM=90°,
∴MF=EF=x,
∴FB=FE+EB=x+3.5,
∴tan∠MBF=,
∴解得 米,
经检验米符合题意,
∴MN=MF+FN=6.5+1.6=8.1≈8米.
【点睛】
本题考查矩形判定与性质,锐角三角函数,简单方程,掌握矩形判定与性质,锐角三角函数,简单方程是解题关键.
21.我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的,应如何购买才能使总费用最少?并求出最少费用.
【答案】(1)甲种奖品的单价为20元,乙种奖品的单价为10元;(2)购买甲种奖品20件,乙种奖品40件时总费用最少,最少费用为800元.
【分析】
(1)设甲种奖品的单价为x元,乙种奖品的单价为y元,根据题意列方程组求出x、y的值即可得答案;
(2)设总费用为w元,购买甲种奖品为m件,根据甲种奖品的数量不少于乙种奖品数量的可得m的取值范围,根据需甲、乙两种奖品共60件可得购买乙种奖品为(60-m)件,根据(1)中所求单价可得w与m的关系式,根据一次函数的性质即可得答案.
【详解】
(1)设甲种奖品的单价为x元,乙种奖品的单价为y元,
∵1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元,
∴,
解得:,
答:甲种奖品的单价为20元,乙种奖品的单价为10元.
(2)设总费用为w元,购买甲种奖品为m件,
∵需甲、乙两种奖品共60件,
∴购买乙种奖品为(60-m)件,
∵甲种奖品的单价为20元,乙种奖品的单价为10元,
∴w=20m+10(60-m)=10m+600,
∵甲种奖品的数量不少于乙种奖品数量的,
∴m≥(60-m),
∴20≤m≤60,
∵10>0,
∴w随m的增大而增大,
∴当m=20时,w有最小值,最小值为10×20+600=800(元),
∴购买甲种奖品20件,乙种奖品40件时总费用最少,最少费用为800元.
【点睛】
本题考查二元一次方程组的应用、一元一次不等式的应用及一次函数的应用,正确得出等量关系及不等关系列出方程组及不等式,熟练掌握一次函数的性质是解题关键.
22.某品牌免洗洗手液按剂型分为凝胶型、液体型,泡沫型三种型号(分别用A,B,C依次表示这三种型号).小辰和小安计划每人购买一瓶该品牌免洗洗手液,上述三种型号中的每一种免洗洗手液被选中的可能性均相同.
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是__________.
(2)请你用列表法或画树状图法,求小辰和小安选择同一种型号免洗洗手液的概率.
【答案】(1);(2)
【分析】
(1)直接根据概率公式求解即可;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【详解】
解:(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是,
故答案为:;
(2)列表如下:
由表可知,共有9种等可能结果,其中小辰和小安选择同一种型号免洗洗手液有3种结果,
所以小辰和小安选择同一种型号免洗洗手液的概率为.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.
23.如图,内接于,是的直径,为上一点,,延长交于点,.
(1)求证:是的切线;
(2)若,,求的长.
【答案】(1)见解析;(2)
【分析】
(1)根据,可得,根据对顶角相等可得,进而可得,根据,可得,结合,根据角度的转化可得,进而即可证明是的切线;
(2)根据,可得,设,则,分别求得,进而根据勾股定理列出方程解方程可得,进而根据即可求得.
【详解】
(1),
,
,
,
,
,
是直径,
,
,
是的切线;
(2),
,
,
设,则,
,,
在中,,
即,
解得(舍去),
.
【点睛】
本题考查了切线的判定,勾股定理解直角三角形,正切的定义,利用角度相等则正切值相等将已知条件转化是解题的关键.
24.在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0).
(1)求这个二次函数的表达式;
(2)求当﹣2≤x≤1时,y的最大值与最小值的差;
(3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.
【分析】(1)由二次函数的图象经过(﹣1,0)和(2,0)两点,组成方程组再解即可求得二次函数的表达式;
(2)求得抛物线的对称轴,根据图象即可得出当x=﹣2,函数有最大值4;当x=12是函数有最小值−94,进而求得它们的差;
(3)由题意得x2﹣x﹣2=(2﹣m)x+2﹣m,整理得x2+(m﹣3)x+m﹣4=0,因为a<2<b,a≠b,△=(m﹣3)2﹣4×(m﹣4)=(m﹣5)2>0,把x=3代入(2﹣m)x+2﹣m>x2﹣x﹣2,解得m<−12.
【解析】(1)由二次函数y=x2+px+q的图象经过(﹣1,0)和(2,0)两点,
∴1−p+q=04+2p+q=0,解得p=−1q=−2,
∴此二次函数的表达式y=x2﹣x﹣2;
(2)∵抛物线开口向上,对称轴为直线x=−1+22=12,
∴在﹣2≤x≤1范围内,当x=﹣2,函数有最大值为:y=4+2﹣2=4;当x=12是函数有最小值:y=14−12−2=−94,
∴的最大值与最小值的差为:4﹣(−94)=254;
(3)∵y=(2﹣m)x+2﹣m与二次函数y=x2﹣x﹣2图象交点的横坐标为a和b,
∴x2﹣x﹣2=(2﹣m)x+2﹣m,整理得
x2+(m﹣3)x+m﹣4=0
∵a<3<b
∴a≠b
∴△=(m﹣3)2﹣4×(m﹣4)=(m﹣5)2>0
∴m≠5
∵a<3<b
当x=3时,(2﹣m)x+2﹣m>x2﹣x﹣2,
把x=3代入(2﹣m)x+2﹣m>x2﹣x﹣2,解得m<−12
∴m的取值范围为m<−12.
25.在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC,交射线CA于点F.请解答下列问题:
(1)当点E在线段AB上,CD是△ACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)
(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;
(3)在(1)、(2)的条件下,若DE=2AE=6,则CF= 18或6 .
【分析】(1)延长CD,FE交于点M.利用AAS证明△MED≌△CBD,得到ME=BC,并利用角平分线加平行的模型证明CF=MF,AE=EF,从而得证;
(2)延长CD,EF交于点M.类似于(1)的方法可证明当点E在线段BA的延长线上,CD是△ACB的角平分线时,BC=AE+CF,当点E在线段BA的延长线上,CD是△ACB的外角平分线时,AE=CF+BC;
(3)先求出AE,AB,即可利用线段的和差求出答案.
【解析】(1)如图①,延长CD,FE交于点M.
∵AB=BC,EF∥BC,
∴∠A=∠BCA=∠EFA,
∴AE=EF,
∴MF∥BC,
∴∠MED=∠B,∠M=∠BCD,
又∵∠FCM=∠BCM,
∴∠M=∠FCM,
∴CF=MF,
又∵BD=DE,
∴△MED≌△CBD(AAS),
∴ME=BC,
∴CF=MF=ME+EF=BC+AE,
即AE+BC=CF;
(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,BC=AE+CF,
如图②,延长CD,EF交于点M.
由①同理可证△MED≌△CBD(AAS),
∴ME=BC,
由①证明过程同理可得出MF=CF,AE=EF,
∴BC=ME=EF+MF=AE+CF;
当点E在线段BA的延长线上,CD是△ACB的外角平分线时,AE=CF+BC.
如图③,延长CD交EF于点M,
由上述证明过程易得△MED≌△CBD(AAS),BC=EM,CF=FM,
又∵AB=BC,
∴∠ACB=∠CAB=∠FAE,
∵EF∥BC,
∴∠F=∠FCB,
∴EF=AE,
∴AE=FE=FM+ME=CF+BC;
(3)CF=18或6,
当DE=2AE=6时,图①中,由(1)得:AE=3,BC=AB=BD+DE+AE=15,
∴CF=AE+BC=3+15=18;
图②中,由(2)得:AE=AD=3,BC=AB=BD+AD=9,
∴CF=BC﹣AE=9﹣3=6;
图③中,DE小于AE,故不存在.
故答案为18或6.
相关试卷
这是一份2024年陕西省中考数学模拟试卷,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年陕西省中考数学模拟试卷18,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年陕西省中考数学模拟试卷17,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。