开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年陕西省中考模拟试卷21docx

    2024年陕西省中考模拟试卷21docx第1页
    2024年陕西省中考模拟试卷21docx第2页
    2024年陕西省中考模拟试卷21docx第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年陕西省中考模拟试卷21docx

    展开

    这是一份2024年陕西省中考模拟试卷21docx,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    1.2019的相反数是( )
    A.B.-2019C.D.2019
    2.如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是( )
    A.B.C.D.
    3.如图,在中,,,,则( )
    B.
    C.D.
    4.如图,在平面直角坐标系中,直线y=x与反比例函数y=(x>0)的图象交于点A,将直线y=x沿y轴向上平移b个单位长度,交y轴于点B,交反比例函数图象于点C.若OA=2BC,则b的值为( )
    A.1B.2
    C.3D.4
    5.下列运算中,正确的是( )
    A.B.
    C.D.
    6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为( )
    A.8B.11
    C.16D.17
    7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是( )
    A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)
    8.如图,菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为( )
    A.20B.30
    C.40D.50
    9.如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是( )
    A.54°B.27°
    C.36°D.108°
    10.二次函数的图象如图所示,有如下结论:①;②;③;④(m为实数).其中正确结论的个数是( )
    A.1个B.2个
    C.3个D.4个
    二、填空题:(本大题共 4 题,每题 3 分,满分 12 分)
    11.计算−23−(−16)的结果是
    12.六边形的内角和是

    13.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(–1,n)、B(2,–1)两点,则一次函数与反比例函数的解析式为
    (13题图) (14题图)
    14.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.
    三、解答题(共 11 小题,计 78 分.解答应写出过程)
    15.计算:.
    16.先化简,再求值:,其中x=.
    17.如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)
    18.如图,,平分.求证:.

    19.跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:
    100 110 114 114 120 122 122 131 144 148
    152 155 156 165 165 165 165 174 188 190
    对这组数据进行整理和分析,结果如下:
    请根据以上信息解答下列问题:
    (1)填空:______,______;
    (2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀?
    (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由.
    20.如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.
    21.今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买根跳绳和个毽子共需元;购买根跳绳和个毽子共需元.
    (1)求购买一根跳绳和一个毽子分别需要多少元;
    (2)某班需要购买跳绳和毽子的总数量是,且购买的总费用不能超过元;若要求购买跳绳的数量多于根,通过计算说明共有哪几种购买跳绳的方案.
    22.为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字,
    (1)“A志愿者被选中”是______事件(填“随机”或“不可能”或“必然”);
    (2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A,B两名志愿者被选中的概率.
    23.如图,已知是⊙的直径,是所对的圆周角,.
    (1)求的度数;
    (2)过点作,垂足为,的延长线交⊙于点.
    若,求的长.
    已知抛物线y=a(x-2)2+c经过点A(-2,0)和点C(0,),与x轴交于另一点B,顶点为D.
    (1)求抛物线的解析式,并写出顶点D的坐标;
    (2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),
    且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.
    25.【模型建立】
    (1)如图1,和都是等边三角形,点关于的对称点在边上.
    ①求证:;
    ②用等式写出线段,,的数量关系,并说明理由.
    【模型应用】
    (2)如图2,是直角三角形,,,垂足为,点关于的对称点在边上.用等式写出线段,,的数量关系,并说明理由.
    【模型迁移】
    (3)在(2)的条件下,若,,求的值.

    2024年陕西省中考数学模拟试卷
    一、选择题:(本大题共 10 题,每题 3 分,满分 30 分)
    1.2019的相反数是
    A.B.-2019C.D.2019
    【答案】B
    【解析】2019的相反数是-2019.故选B.
    2.如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是( )
    A.B.C.D.
    【答案】A
    【分析】根据从正面看到的图形是主视图,即可得.
    【详解】解:从前面看,第一层是两个小正方形,第二层左边一个小正方形,第三层左边1个小正方形,故选A.
    【点睛】本题考查了简单几何体的三视图,解题的关键是掌握从正面看到的图形是主视图.
    3.如图,在中,,,,则( )
    A.B.C.D.
    【答案】D
    【解析】
    【分析】
    先根据等腰三角形的性质得到∠B的度数,再根据平行线的性质得到∠BCD.
    【详解】
    解:∵AB=AC,∠A=40°,
    ∴∠B=∠ACB=70°,
    ∵CD∥AB,
    ∴∠BCD=∠B=70°,
    故选D.
    【点睛】
    本题考查了等腰三角形的性质和平行线的性质,掌握等边对等角是关键,难度不大.
    4.如图,在平面直角坐标系中,直线y=x与反比例函数y=(x>0)的图象交于点A,将直线y=x沿y轴向上平移b个单位长度,交y轴于点B,交反比例函数图象于点C.若OA=2BC,则b的值为( )
    A.1B.2C.3D.4
    【答案】C
    【解析】
    【分析】
    解析式联立,解方程求得的横坐标,根据定义求得的横坐标,把横坐标代入反比例函数的解析式求得的坐标,代入即可求得的值.
    【详解】
    解:直线与反比例函数的图象交于点,
    解求得,
    的横坐标为2,
    如图,过C点、A点作y轴垂线,
    OA//BC,
    ∴,
    ∴,

    ∴,
    ∴,解得=1,
    的横坐标为1,
    把代入得,,

    将直线沿轴向上平移个单位长度,得到直线,
    把的坐标代入得,求得,
    故选:.
    【点睛】
    本题考查了反比例函数与一次函数的综合问题,涉及函数的交点、一次函数平移、待定系数法求函数解析式等知识,求得交点坐标是解题的关键.
    5.下列运算中,正确的是( )
    A.B.
    C.D.
    【答案】D
    【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.
    【详解】解:A. ,根据同底数幂的乘法法则可知:,故选项计算错误,不符合题意;
    B. ,和不是同类项,不能合并,故选项计算错误,不符合题意;
    C. ,根据完全平方公式可得:,故选项计算错误,不符合题意;
    D. ,根据单项式乘多项式的法则可知选项计算正确,符合题意;
    故选:D
    【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.
    6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为( )
    A.8B.11C.16D.17
    【分析】在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为
    【解析】∵DE垂直平分AB,
    ∴AE=BE,
    ∴△ACE的周长=AC+CE+AE
    =AC+CE+BE
    =AC+BC
    =5+6
    =11.
    故选:B.
    7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是( )
    A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)
    【分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.
    【解析】A、当点A的坐标为(﹣1,2)时,﹣k+3=3,
    解得:k=1>0,
    ∴y随x的增大而增大,选项A不符合题意;
    B、当点A的坐标为(1,﹣2)时,k+3=﹣2,
    解得:k=﹣5<0,
    ∴y随x的增大而减小,选项B符合题意;
    C、当点A的坐标为(2,3)时,2k+3=3,
    解得:k=0,选项C不符合题意;
    D、当点A的坐标为(3,4)时,3k+3=4,
    解得:k=13>0,
    ∴y随x的增大而增大,选项D不符合题意.
    故选:B.
    8.如图,菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为( )
    A.20B.30C.40D.50
    【分析】由三角形中位线定理可求AB=10,由菱形的性质即可求解.
    【解析】∵E,F分别是AD,BD的中点,
    ∴EF是△ABD的中位线,
    ∴EF=12AB=5,
    ∴AB=10,
    ∵四边形ABD是菱形,
    ∴AB=BC=CD=AD=10,
    ∴菱形ABCD的周长=4AB=40;
    故选:C.
    9.如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是( )
    A.54°B.27°C.36°D.108°
    【分析】根据圆周角定理求出∠AOB,根据等腰三角形的性质求出∠ABO=∠BAO,根据三角形内角和定理求出即可.
    【解析】∵∠ACB=54°,
    ∴圆心角∠AOB=2∠ACB=108°,
    ∵OB=OA,
    ∴∠ABO=∠BAO=12×(180°﹣∠AOB)=36°,
    故选:C.
    10.二次函数的图象如图所示,有如下结论:①;②;③;④(m为实数).其中正确结论的个数是( )
    A.1个B.2个C.3个D.4个
    【答案】D
    【解析】
    【分析】
    由抛物线的对称轴公式即可对②进行判断;由抛物线的开口方向可判断a,结合抛物线的对称轴可判断b,根据抛物线与y轴的交点可判断c,进而可判断①;由图象可得:当x=3时,y>0,即9a+3b+c>0,结合②的结论可判断③;由于当x=1时,二次函数y取最小值a+b+c,即(m为实数),进一步即可对④进行判断,从而可得答案.
    【详解】
    解:∵抛物线的开口向上,∴a>0,
    ∵抛物线的对称轴是直线x=1,∴,
    ∴b<0,,故②正确;
    ∵抛物线与y轴交于负半轴,∴c<0,
    ∴,故①正确;
    ∵当x=3时,y>0,∴9a+3b+c>0,
    ∵,∴,
    整理即得:,故③正确;
    ∵当x=1时,二次函数y取最小值a+b+c,
    ∴(m为实数),即(m为实数),故④正确.
    综上,正确结论的个数有4个.
    故选:D.
    二、填空题:(本大题共 4 题,每题 3 分,满分 12 分)
    11.计算−23−(−16)的结果是
    【答案】−12
    【分析】根据有理数的减法法则计算即可.
    【解析】−23−(−16)=−23+16=−12.
    12.六边形的内角和是
    【答案】720°
    【分析】利用多边形的内角和=(n﹣2)•180°即可解决问题.
    【解析】根据多边形的内角和可得:
    (6﹣2)×180°=720°.
    13.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(–1,n)、B(2,–1)两点,则一次函数与反比例函数的解析式为
    【答案】一次函数的解析式为y=–x+1,反比例函数的解析式为y=–.
    【解析】∵反比例函数y=经过点B(2,–1),∴m=–2,
    ∵点A(–1,n)在y=上,∴n=2,∴A(–1,2),把A,B坐标代入y=kx+b,则有,解得,
    ∴一次函数的解析式为y=–x+1,反比例函数的解析式为y=–.
    【名师点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题。
    14.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.
    【答案】2–2
    【解析】根据旋转过程可知:∠CAD=30°=∠CAB,AC=AD=4.
    ∴∠BCA=∠ACD=∠ADC=75°.
    ∴∠ECD=180°–2×75°=30°.
    ∴∠E=75°–30°=45°.
    过点C作CH⊥AE于H点,
    在Rt△ACH中,CH=AC=2,AH=2.
    ∴HD=AD–AH=4–2.
    在Rt△CHE中,∵∠E=45°,
    ∴EH=CH=2.
    ∴DE=EH–HD=2–(4–2)=2–2.
    故答案为2–2.
    【名师点睛】本题主要考查了旋转的性质以及特殊直角三角形的性质,解题的关键是作垂线构造直角三角形,利用线段的和差求解即可.
    三、解答题(共 11 小题,计 78 分.解答应写出过程)
    15.计算:.
    【答案】2.
    【分析】
    由特殊的三角函数值得到,由零指数幂公式算出,化简,最后算出结果即可.
    【详解】
    解:原式
    【点睛】
    本题考查了实数的混合运算,关键注意零指数幂的运算和特殊的三角函数值.
    16.先化简,再求值:,其中x=.
    【解析】原式=
    =
    =,
    当x=时,原式==.
    17.如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)
    【答案】详见解析
    【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使∠PBC=45°即可.
    【详解】解:如图,点P即为所求.
    作法:(1)以点C为圆心,以任意长为半径画弧交AC于D,交BC于E,
    (2)以点B为圆心,以CD长为半径画弧,交BC于F,
    (3)以点F为圆心,以DE长为半径画弧,交前弧于点M,
    (3)连接BM,并延长BM与AC交于点P,则点P即为所求.
    【点睛】本题考查了作图——基本作图.解决本题的关键是掌握基本作图方法.
    18.如图,,平分.求证:.

    【答案】见解析
    【分析】先由角平分线的定义得到,再利用证明即可.
    【详解】∵平分,
    ∴,
    在和中,

    ∴.
    【点睛】全等三角形的判定,角平分线的定义等等,灵活运用所学知识是解题的关键.
    19.跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:
    100 110 114 114 120 122 122 131 144 148
    152 155 156 165 165 165 165 174 188 190
    对这组数据进行整理和分析,结果如下:
    请根据以上信息解答下列问题:
    (1)填空:______,______;
    (2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀?
    (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由.
    【答案】(1),
    (2)
    (3)是,理由见解析
    【分析】(1)根据众数与中位数的定义进行计算即可求解;
    (2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解;
    (3)根据中位数的定义即可求解;
    【详解】(1)解:这组数据中,165出现了4次,出现次数最多
    ∴,
    这组数据从小到大排列,第10个和11个数据分别为,
    ∴,
    故答案为:,.
    (2)解:∵跳绳165次及以上人数有7个,
    ∴估计七年级240名学生中,有个优秀,
    (3)解:∵中位数为,
    ∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.
    【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键.
    20.如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.
    【分析】过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,可得四边形AMEC和四边形AMFB均为矩形,可以证明△BFN≌△CEM,得NF=EM=49,进而可得商业大厦的高MN.
    【解析】如图,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,
    ∴∠CEF=∠BFE=90°,
    ∵CA⊥AM,NM⊥AM,
    ∴四边形AMEC和四边形AMFB均为矩形,
    ∴CE=BF,ME=AC,
    ∠1=∠2,
    ∴△BFN≌△CEM(ASA),
    ∴NF=EM=31+18=49,
    由矩形性质可知:EF=CB=18,
    ∴MN=NF+EM﹣EF=49+49﹣18=80(m).
    答:商业大厦的高MN为80m.
    21.今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买根跳绳和个毽子共需元;购买根跳绳和个毽子共需元.
    (1)求购买一根跳绳和一个毽子分别需要多少元;
    (2)某班需要购买跳绳和毽子的总数量是,且购买的总费用不能超过元;若要求购买跳绳的数量多于根,通过计算说明共有哪几种购买跳绳的方案.
    【答案】(1)购买一根跳绳需要6元,一个毽子需要4元;(2)方案一:购买跳绳21根;方案二:购买跳绳22根
    【解析】
    【分析】
    (1)设购买一根跳绳需要x元,一个毽子需要y元,依题意列出二元一次方程组解之即可;
    (2)设学校购进跳绳m根,则购进毽子(54-m)根,根据题意列出不等式解之得m的范围,进而可判断购买方案.
    【详解】
    (1)设购买一根跳绳需要x元,一个毽子需要y元,
    依题意,得:,
    解得:,
    答:购买一根跳绳需要6元,一个毽子需要4元;
    (2)设学校购进跳绳m根,则购进毽子(54-m)根,
    根据题意,得:,
    解得:m≤22,
    又m﹥20,且m为整数,
    ∴m=21或22,
    ∴共有两种购买跳绳的方案,方案一:购买跳绳21根;方案二:购买跳绳22根.
    【点睛】
    本题考查二元一次方程组以及一元一次不等式的应用,根据题意正确列出方程式及不等式是解答的关键.
    22.为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字,
    (1)“A志愿者被选中”是______事件(填“随机”或“不可能”或“必然”);
    (2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A,B两名志愿者被选中的概率.
    【答案】(1)随机;(2)
    【分析】
    (1)随机事件是在一定条件下,可能发生,也可能不发生的事件,随机事件与确定性事件相比,是不确定的,因为对这种事件我们不能确定它是发生呢,还是不发生,即对事件的结果无法确定.根据定义可得答案;
    (2)先画树状图得到所有的等可能的结果数,得到都被选中的结果数,再利用概率公式计算即可得到答案.
    【详解】
    解:(1)由随机事件的定义可得:
    “A志愿者被选中”是随机事件,
    故答案:随机.
    (2)画树状图如下:
    一共有种等可能的结果,其中都被选中的结果数有种,
    A,B两名志愿者被选中的概率
    【点睛】
    本题考查的是随机事件的概念,利用画树状图或列表的方法求解简单随机事件的概率,掌握列表法或画树状图的方法是解题的关键.
    23.如图,已知是⊙的直径,是所对的圆周角,.
    (1)求的度数;
    (2)过点作,垂足为,的延长线交⊙于点.若,求的长.
    【答案】(1);(2)
    【分析】
    (1)连结,根据圆周角性质,得;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;
    (2)根据含角的直角三角形性质,得;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.
    【详解】
    (1)连结,

    是的直径,

    (2),,

    ,,且是直径


    【点睛】
    本题考查了圆、含角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.
    24.已知抛物线y=a(x-2)2+c经过点A(-2,0)和点C(0,),与x轴交于另一点B,顶点为D.
    (1)求抛物线的解析式,并写出顶点D的坐标;
    (2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.
    【答案】(1)y=(x-2)2+3;顶点D的坐标为(2,3);(2)BE=5.
    【解析】
    【分析】
    (1)本题可利用待定系数法,将A,C两点代入抛物线求解即可.
    (2)本题可利用等腰三角形性质,通过角的互换证明BD=BE,最后利用勾股定理求解BD即可解答.
    【详解】
    (1)将点A(-2,0),C(0,)代入 y = a(x - 2)2 + c,得:,解得:.
    ∴抛物线的解析式为y=(x-2)2+3 .
    ∴顶点D的坐标为(2,3).
    (2)∵A,B两点为抛物线与x轴两交点,D为坐标顶点,
    ∴DA=DB,故∠DAB=∠DBA,
    ∵DE=EF,
    ∴∠EDF=∠EFD.
    ∵∠EFD=∠FEB+∠EBD,∠DEF=∠DAB,
    ∴∠EDF=∠FEB+∠DEF,
    ∴∠BDE=∠BED,
    故BD=BE.
    ∵A(-2,0),D(2,3),
    ∴利用对称性可得B(6,0),
    经计算BD=5,
    故BE=5.
    【点睛】
    本题考查二次函数,第一问为常规题目,利用待定系数法求解即可;第二问属于二次函数与几何综合,解答时需要结合等腰三角形性质与判定求解本题.
    25.【模型建立】
    (1)如图1,和都是等边三角形,点关于的对称点在边上.
    ①求证:;
    ②用等式写出线段,,的数量关系,并说明理由.
    【模型应用】
    (2)如图2,是直角三角形,,,垂足为,点关于的对称点在边上.用等式写出线段,,的数量关系,并说明理由.
    【模型迁移】
    (3)在(2)的条件下,若,,求的值.

    【答案】(1)①见解析;②,理由见解析;(2),理由见解析;(3)
    【分析】(1)①证明:,再证明即可;②由和关于对称,可得.证明,从而可得结论;
    (2)如图,过点作于点,得,证明,.可得,证明,,可得,则,可得,从而可得结论;
    (3)由,可得,结合,求解,,如图,过点作于点.可得,,可得,再利用余弦的定义可得答案.
    【详解】(1)①证明:∵和都是等边三角形,
    ∴,,,
    ∴,
    ∴,
    ∴.
    ∴.

    ②.理由如下:
    ∵和关于对称,
    ∴.
    ∵,
    ∴.
    ∴.
    (2).理由如下:
    如图,过点作于点,得.

    ∵和关于对称,
    ∴,.
    ∵,
    ∴,
    ∴.
    ∴.
    ∵是直角三角形,,
    ∴,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴.
    ∴,即.
    (3)∵,
    ∴,
    ∵,
    ∴,
    ∴.
    如图,过点作于点.

    ∵,
    ∴,

    ∴.
    ∴.
    【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,勾股定理的应用,轴对称的性质,锐角三角函数的灵活应用,本题难度较高,属于中考压轴题,作出合适的辅助线是解本题的关键.
    平均数
    众数
    中位数
    145
    平均数
    众数
    中位数
    145

    相关试卷

    2024年陕西省中考数学模拟试卷:

    这是一份2024年陕西省中考数学模拟试卷,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年陕西省中考数学模拟试卷17:

    这是一份2024年陕西省中考数学模拟试卷17,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年陕西省中考数学模拟试卷14:

    这是一份2024年陕西省中考数学模拟试卷14,共27页。试卷主要包含了选择题.,填空题.,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map