所属成套资源:北师大版年八年级数学下册《同步考点解读专题训练》(原卷版+解析)
- 北师大版年八年级数学下册《同步考点解读专题训练》专题1.4线段的垂直平分线(知识解读)(原卷版+解析) 试卷 0 次下载
- 北师大版年八年级数学下册《同步考点解读专题训练》(培优特训)专项1.3角平分线+垂直构造全等模型综合应用(原卷版+解析) 试卷 0 次下载
- 北师大版年八年级数学下册《同步考点解读专题训练》专题1.5角平分线(知识解读)(原卷版+解析) 试卷 0 次下载
- 北师大版年八年级数学下册《同步考点解读专题训练》专题2.2一元一次不等式(专项训练)(原卷版+解析) 试卷 0 次下载
- 北师大版年八年级数学下册《同步考点解读专题训练》专题2.2一元一次不等式(知识解读)(原卷版+解析) 试卷 0 次下载
初中数学北师大版八年级下册4 角平分线练习题
展开
这是一份初中数学北师大版八年级下册4 角平分线练习题,共17页。试卷主要包含了如图等内容,欢迎下载使用。
1.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为( )
A.B.2C.3D.2
2.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( )
A.8B.6C.4D.2
3.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )
A.一处B.二处C.三处D.四处
4.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.
如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A.角的内部到角的两边的距离相等的点在角的平分线上
B.角平分线上的点到这个角两边的距离相等
C.三角形三条角平分线的交点到三条边的距离相等
D.以上均不正确
5.(2021秋•江陵县期末)如图,BD平分∠ABC,DE⊥AB于E点,S△DBC=12,BC=6,则DE的长为( )
A.2B.4C.8D.不能确定
6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )
A.3B.4C.5D.6
7.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )
A.1:1:1B.1:2:3C.2:3:4D.3:4:5
8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )
A.15B.30C.45D.60
9.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是( )
A.24B.30C.36D.42
10.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是 .
11.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是 .
12.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.
13.(2021秋•道县期末)如图,在△ABC中,∠ABC=60°,∠ACB=40°,点P为∠ABC、∠ACB的角平分线的交点.
(1)∠BPC的度数是 .
(2)请问点P是否在∠BAC的角平分线上?请说明理由.
14.(2020秋•大安市期末)如图,已知点D、E、F分别是△ABC的三边上的点,CE=BF,且△DCE的面积与△DBF的面积相等.求证:AD平分∠BAC.
15.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:
(1)CF=EB.
(2)AB=AF+2EB.
专题1.5 角平分线(专项训练)
1.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为( )
A.B.2C.3D.2
【答案】C
【解答】解:过点P作PB⊥OM于B,
∵OP平分∠MON,PA⊥ON,PA=3,
∴PB=PA=3,
∴PQ的最小值为3.
故选:C.
2.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( )
A.8B.6C.4D.2
【答案】C
【解答】解:过点P作PE⊥BC于E,
∵AB∥CD,PA⊥AB,
∴PD⊥CD,
∵BP和CP分别平分∠ABC和∠DCB,
∴PA=PE,PD=PE,
∴PE=PA=PD,
∵PA+PD=AD=8,
∴PA=PD=4,
∴PE=4.
故选:C.
3.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )
A.一处B.二处C.三处D.四处
【答案】D
【解答】解:如图所示,加油站站的地址有四处.
故选:D.
4.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.
如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A.角的内部到角的两边的距离相等的点在角的平分线上
B.角平分线上的点到这个角两边的距离相等
C.三角形三条角平分线的交点到三条边的距离相等
D.以上均不正确
【答案】A
【解答】解:如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,
∵两把完全相同的长方形直尺,
∴PE=PF,
∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),
故选:A.
5.(2021秋•江陵县期末)如图,BD平分∠ABC,DE⊥AB于E点,S△DBC=12,BC=6,则DE的长为( )
A.2B.4C.8D.不能确定
【答案】B
【解答】解:过D点作DF⊥BC于F,如图,
∵S△DBC=12,BC=6,
∴×6×DF=12,
∴DF=4,
∵BD平分∠ABC,DE⊥AB,DF⊥BC,
∴DE=DF=4.
故选:B.
6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )
A.3B.4C.5D.6
【答案】A
【解答】解:如图,过点D作DE⊥AB于E,
∵∠C=90°,AD平分∠BAC,
∴DE=CD,
∴S△ABD=AB•DE=×10•DE=15,
解得DE=3,
∴CD=3.
故选:A.
7.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )
A.1:1:1B.1:2:3C.2:3:4D.3:4:5
【答案】C
【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,
∵点O是内心,
∴OE=OF=OD,
∴S△ABO:S△BCO:S△CAO=•AB•OE:•BC•OF:•AC•OD=AB:BC:AC=2:3:4,
故选:C.
8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )
A.15B.30C.45D.60
【答案】B
【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,
又∵∠C=90°,
∴DE=CD,
∴△ABD的面积=AB•DE=×15×4=30.
故选:B.
9.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是( )
A.24B.30C.36D.42
【答案】B
【解答】解:过D作DH⊥AB交BA的延长线于H,
∵BD平分∠ABC,∠BCD=90°,
∴DH=CD=4,
∴四边形ABCD的面积=S△ABD+S△BCD=AB•DH+BC•CD=×6×4+×9×4=30,
故选:B.
10.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是 .
【答案】4
【解答】解:∵CD平分∠ACB,DE⊥AC,DF⊥BC,
∴DF=DE=2,
∴S△BCD=•BC×DF=×4×2=4
故答案为:4.
11.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是 .
【答案】42
【解答】解:
过O作OE⊥AB于E,OF⊥AC于F,连接OA,
∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,
∴OE=OD,OD=OF,
即OE=OF=OD=4,
∴△ABC的面积是:S△AOB+S△AOC+S△OBC
=×AB×OE+×AC×OF+×BC×OD
=×4×(AB+AC+BC)
=×4×21=42,
故答案为:42.
12.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.
【解答】解:如图,点P为所作.
13.(2021秋•道县期末)如图,在△ABC中,∠ABC=60°,∠ACB=40°,点P为∠ABC、∠ACB的角平分线的交点.
(1)∠BPC的度数是 .
(2)请问点P是否在∠BAC的角平分线上?请说明理由.
【答案】(1)130° (2)略
【解答】解:(1)∵P点是∠ABC和∠ACB角平分线的交点,
∴∠CBP=∠ABP=∠ABC,∠BCP=∠ACP=∠ACB,
∵∠ABC=60°,∠ACB=40°,
∴∠PBC+∠PCB=∠ABC+∠ACB=30°+20°=50°,
∴∠BDC=180°﹣50°=130°,
故答案为:130°;
(2)答:点P在∠BAC的角平分线上,理由如下:
过点p分别作三角形三边的垂线,垂足分别为D、E、F,
∵PB、PC分别是∠ABC、∠ACB 的角平分线,
∴PD=PE PE=PF,
∴PD=PF,
∴点P在∠BAC的角平分线上;
14.(2020秋•大安市期末)如图,已知点D、E、F分别是△ABC的三边上的点,CE=BF,且△DCE的面积与△DBF的面积相等.求证:AD平分∠BAC.
【答案】略
【解答】证明:过D作DM⊥AB于M,DN⊥AC于N,
∵△DCE的面积与△DBF的面积相等,
∴=,
∵CE=BF,
∴DM=DN,
∴点D在∠BAC的平分线上,
又∵A点也在∠BAC的平分线上,
∴AD平分∠BAC.
15.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:
(1)CF=EB.
(2)AB=AF+2EB.
【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△CDF和Rt△EDB中,
,
∴Rt△CDF≌Rt△EDB(HL).
∴CF=EB;
(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴CD=DE.
在Rt△ADC与Rt△ADE中,
,
∴Rt△ADC≌Rt△ADE(HL),
∴AC=AE,
∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
相关试卷
这是一份北师大版八年级下册1 因式分解同步测试题,共13页。
这是一份北师大版八年级下册第三章 图形的平移与旋转3 中心对称精练,共16页。
这是一份初中数学北师大版八年级下册2 图形的旋转练习题,共21页。