所属成套资源:北师大版年八年级数学下册《同步考点解读专题训练》(原卷版+解析)
- 北师大版年八年级数学下册《同步考点解读专题训练》专题4.1因式分解-提公因式(专项训练)(原卷版+解析) 试卷 0 次下载
- 北师大版年八年级数学下册《同步考点解读专题训练》专题4.1因式分解-提公因式(知识解读)(原卷版+解析) 试卷 0 次下载
- 北师大版年八年级数学下册《同步考点解读专题训练》(培优特训)专项1.4与尺规作图有关的计算和证明的综合应用(原卷版+解析) 试卷 0 次下载
- 北师大版年八年级数学下册《同步考点解读专题训练》(培优特训)专项2.1不等式含参数取值范围高分必刷(原卷版+解析) 试卷 1 次下载
- 北师大版年八年级数学下册《同步考点解读专题训练》(培优特训)专项2.2一元一次(组)不等式应用(四大类型)(原卷版+解析) 试卷 0 次下载
北师大版年八年级数学下册《同步考点解读专题训练》(培优特训)专项1.2等边三角形综合应用(原卷版+解析)
展开
这是一份北师大版年八年级数学下册《同步考点解读专题训练》(培优特训)专项1.2等边三角形综合应用(原卷版+解析),共32页。
(培优特训)专项1.2 等边三角形综合应用1.(2022•昭化区模拟)如图,在△ABC中,∠C=90°,∠CAB=30°,AC=6,D为AB边上一动点(不与点A重合),△AED为等边三角形,过点D作DE的垂线,F为垂线上任意一点,连接EF,G为EF的中点,连接BG,则BG的最小值是( )A.2 B.6 C.3 D.92.(2022秋•槐荫区校级期末)如图,在直角坐标系xOy中,直线MN分别与x轴,y轴交于点M,N,且OM=4,∠OMN=30°,等边△AOB的顶点A,B分别在线段MN,OM上,点A的坐标为( )A.(1,) B.(1,) C.(,1) D.(,)3.(2020秋•承德县期末)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则B6B7的边长为( )A.6 B.12 C.32 D.644.(2021秋•华容县期末)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③OP=OQ;④△CPQ为等边三角形;⑤∠AOB=60°.其中正确的有 .(注:把你认为正确的答案序号都写上)5.(2021秋•滑县期末)如图,已知等边三角形ABC的边长为3,过AB边上一点P作PE⊥AC于点E,Q为BC延长线上一点,取PA=CQ,连接PQ,交AC于M,则EM的长为 .6.(2021春•建平县期末)如图(1),△AB1C1是边长为1的等边三角形;如图(2),取AB1的中点C2,画等边三角形AB2C2,连接B1B2;如图(3),取AB2的中点C3,画等边三角形AB3C3,连接B2B3;如图(4),取AB3的中点C4,画等边三角形AB4C4,连接B3B4,则B3B4的长为 .7.(2020春•新都区期末)边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图)…,按此方式依次操作,则第7个正六边形的边长是 .8.(2022秋•铁东区校级期末)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.9.(2021秋•东至县期末)如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.10.(2021秋•韶关期末)已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.11.(2022春•建平县期末)如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.12.(2022秋•沙依巴克区校级期末)如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.13.(2022秋•常州期中)如图,AB=AC,∠BAC=120°,AD⊥AC,AE⊥AB.(1)求∠C的度数;(2)求证:△ADE是等边三角形.14.(2021•罗湖区校级模拟)如图,△ABC是等边三角形.(1)如图①,DE∥BC,分别交AB、AC于点D、E.求证:△ADE是等边三角形;(2)如图②,△ADE仍是等边三角形,点B在ED的延长线上,连接CE,判断∠BEC的度数及线段AE、BE、CE之间的数量关系,并说明理由.15.(2021秋•香洲区期中)如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向B点以2cm/s的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,△PBQ为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?16.(西城区校级期中)如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.17.(垦利区期中)如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.(1)求证:△BCE≌△ACD;(2)求证:FH∥BD.18.(重庆模拟)如图,等边△ABC的边长为4,BD为AC边上的中线,E为BC边上一点(不与B、C重合).(1)如图1,若DE⊥BC,连接AE,求AE的长;(2)如图2,若DE平分∠BDC,求BE的长;(3)如图3,连接AE,交BD于点M.以AM为边作等边△AMN,连接BN.请猜想∠CAE、∠CBD、∠BMN之间的数量关系,并证明你的结论.(培优特训)专项1.2 等边三角形综合应用1.(2022•昭化区模拟)如图,在△ABC中,∠C=90°,∠CAB=30°,AC=6,D为AB边上一动点(不与点A重合),△AED为等边三角形,过点D作DE的垂线,F为垂线上任意一点,连接EF,G为EF的中点,连接BG,则BG的最小值是( )A.2 B.6 C.3 D.9【答案】B【解答】解:如图,连接DG,AG,设AG交DE于点H,∵DE⊥DF,G为EF的中点,∴DG=GE,∴点G在线段DE的垂直平分线上,∵△AED为等边三角形,∴AD=AE,∴点A在线段DE的垂直平分线上,∴AG为线段DE的垂直平分线,∴AG⊥DE,∠DAG=∠DAE=30°,∴点G在射线AH上,当BG⊥AH时,BG的值最小,如图所示,设点G'为垂足,∵∠ACB=90°,∠CAB=30°,∴∠ACB=∠AG'B,∠CAB=∠BAG',则在△BAC和△BAG'中,,∴△BAC≌△BAG'(AAS).∴BG'=BC,在Rt△ABC中,∠CAB=30°,AC=6,∴AB=2BC,∵AB2=BC2+AC2,∴(2BC)2=BC2+(6)2,解得:BC=6,∴BG'=6.故选:B.2.(2022秋•槐荫区校级期末)如图,在直角坐标系xOy中,直线MN分别与x轴,y轴交于点M,N,且OM=4,∠OMN=30°,等边△AOB的顶点A,B分别在线段MN,OM上,点A的坐标为( )A.(1,) B.(1,) C.(,1) D.(,)【答案】A【解答】解:∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=4,∠OMN=30°,∴∠ONM=60°,∵△AOB为等边三角形,∴∠AOB=60°,∠AMO=30°,∴∠OAM=90°,∴OA⊥MN,即△OAM为直角三角形,∴OA=OM=×4=2,过点A作AC⊥OB于点C,∴OC=OA=1,∴AC=,∴点A的坐标为(1,).故选:A.3.(2020秋•承德县期末)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则B6B7的边长为( )A.6 B.12 C.32 D.64【答案】C【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A7B7=26B1A2=26=64,B6A7==32,△B7B6A7是直角三角形,∠B7B6A7=90°,∴B6B7===32.故选:C.4.(2021秋•华容县期末)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③OP=OQ;④△CPQ为等边三角形;⑤∠AOB=60°.其中正确的有 .(注:把你认为正确的答案序号都写上)【答案】①②④⑤【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,结论①正确.∵△ACD≌△BCE,∴∠CAD=∠CBE,又∵∠ACB=∠DCE=60°,∴∠BCD=180°﹣60°﹣60°=60°,∴∠ACP=∠BCQ=60°,在△ACP和△BCQ中,∠ACP=∠BCQ,∠CAP=∠CBQ,AC=BC,∴△ACP≌△BCQ(AAS),∴AP=BQ,CP=CQ,又∵∠PCQ=60°,∴△PCQ为等边三角形,结论④正确;∴∠PQC=∠DCE=60°,∴PQ∥AE,结论②正确.∵△ACD≌△BCE,∴∠ADC=∠AEO,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,∴结论⑤正确.没有条件证出OP=OQ,③错误;综上,可得正确的结论有4个:①②④⑤.故答案为:①②④⑤.5.(2021秋•滑县期末)如图,已知等边三角形ABC的边长为3,过AB边上一点P作PE⊥AC于点E,Q为BC延长线上一点,取PA=CQ,连接PQ,交AC于M,则EM的长为 .【答案】【解答】解:过P作PF∥BC交AC于F,如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFM=∠QCM,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ,在△PFM和△QCM中,,∴△PFM≌△QCM(AAS),∴FM=CM,∵AE=EF,∴EF+FM=AE+CM,∴AE+CM=ME=AC,∵AC=3,∴ME=,故答案为:.6.(2021春•建平县期末)如图(1),△AB1C1是边长为1的等边三角形;如图(2),取AB1的中点C2,画等边三角形AB2C2,连接B1B2;如图(3),取AB2的中点C3,画等边三角形AB3C3,连接B2B3;如图(4),取AB3的中点C4,画等边三角形AB4C4,连接B3B4,则B3B4的长为 .【答案】【解答】解:如图(2),过点C2作C2D⊥B1B2于点D,∵△AB1C1是边长为1的等边三角形,C2是AB1的中点,∴B1C2=B2C2=.∵△AB2C2是等边三角形,∴∠B1C2B2=120°,B1C2=B2C2,∴∠DB1C1=∠DB2C2=30°,∴B1D==,∴B1B2=2B1D=,同理可得,B2B3=,B3B4=.故答案为:.7.(2020春•新都区期末)边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图)…,按此方式依次操作,则第7个正六边形的边长是 .【答案】×()6a【解答】解:如图1,连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中,∵,∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,如图2,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是()3a,第四个正六边形的边长是×()3a;第五个等边三角形的边长是()4a,第五个正六边形的边长是×()4a;…第n个正六边形的边长是×()n﹣1a,∴第七个正六边形的边长是×()6a.故答案为:×()6a.8.(2022秋•铁东区校级期末)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.【解答】(1)证明:∵△ABC为等边三角形,∴AB=CA=BC,∠BAE=∠ACD=60°;在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴AD=BE;(2)解:∵△ABE≌△CAD,∴∠CAD=∠ABE,∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,∴∠PBQ=90°﹣60°=30°,∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6,又∵PE=1,∴AD=BE=BP+PE=6+1=7.9.(2021秋•东至县期末)如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.【解答】证明:(1)∵△BOC≌△ADC,∴OC=DC,∵∠OCD=60°,∴△OCD是等边三角形.解:(2)△AOD是直角三角形.理由如下:∵△OCD是等边三角形,∴∠ODC=60°,∵△BOC≌△ADC,α=150°,∴∠ADC=∠BOC=α=150°,∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°,∴△AOD是直角三角形.(3)∵△OCD是等边三角形,∴∠COD=∠ODC=60°.∵∠AOB=110°,∠ADC=∠BOC=α,∴∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣110°﹣α﹣60°=190°﹣α,∠ADO=∠ADC﹣∠ODC=α﹣60°,∴∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(190°﹣α)﹣(α﹣60°)=50°.①当∠AOD=∠ADO时,190°﹣α=α﹣60°,∴α=125°.②当∠AOD=∠OAD时,190°﹣α=50°,∴α=140°.③当∠ADO=∠OAD时,α﹣60°=50°,∴α=110°.综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.10.(2021秋•韶关期末)已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.【解答】解:(1)∵△ABC、△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE.(2)解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵等边三角形DCE,∴∠CED=∠CDE=60°,∴∠ADE+∠BED=∠ADC+∠CDE+∠BED,=∠ADC+60°+∠BED,=∠CED+60°,=60°+60°,=120°,∴∠DOE=180°﹣(∠ADE+∠BED)=60°,答:∠DOE的度数是60°.(3)证明:∵△ACD≌△BCE,∴∠CAD=∠CBE,AD=BE,AC=BC又∵点M、N分别是线段AD、BE的中点,∴AM=AD,BN=BE,∴AM=BN,在△ACM和△BCN中,∴△ACM≌△BCN,∴CM=CN,∠ACM=∠BCN,又∠ACB=60°,∴∠ACM+∠MCB=60°,∴∠BCN+∠MCB=60°,∴∠MCN=60°,∴△MNC是等边三角形.11.(2022春•建平县期末)如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.【解答】解:(1)△DBC和△EAC会全等证明:∵∠ACB=60°,∠DCE=60°∴∠BCD=60°﹣∠ACD,∠ACE=60°﹣∠ACD∴∠BCD=∠ACE在△DBC和△EAC中,∵,∴△DBC≌△EAC(SAS),(2)∵△DBC≌△EAC∴∠EAC=∠B=60°又∠ACB=60°∴∠EAC=∠ACB∴AE∥BC(3)结论:AE∥BC理由:∵△ABC、△EDC为等边三角形∴BC=AC,DC=CE,∠BCA=∠DCE=60°∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE在△DBC和△EAC中,∵,∴△DBC≌△EAC(SAS),∴∠EAC=∠B=60°又∵∠ACB=60°∴∠EAC=∠ACB∴AE∥BC.12.(2022秋•沙依巴克区校级期末)如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.【解答】(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边);(2)∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=4,∴DC=8,∵AD=CD,∴AC=16,∴△ABC的周长=3AC=48.13.(2022秋•常州期中)如图,AB=AC,∠BAC=120°,AD⊥AC,AE⊥AB.(1)求∠C的度数;(2)求证:△ADE是等边三角形.【解答】(1)解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,故答案为:30°.(2)证明:∵∠B=∠C=30°,AD⊥AC,AE⊥AB.∴∠ADC=∠AEB=60°,∴∠ADC=∠AEB=∠EAD=60°,∴△ADE是等边三角形.14.(2021•罗湖区校级模拟)如图,△ABC是等边三角形.(1)如图①,DE∥BC,分别交AB、AC于点D、E.求证:△ADE是等边三角形;(2)如图②,△ADE仍是等边三角形,点B在ED的延长线上,连接CE,判断∠BEC的度数及线段AE、BE、CE之间的数量关系,并说明理由.【解答】(1)证明:∵△ABC是等边三角形,∴∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠B=60°,∠AED=∠C=60°,∴△ADE是等边三角形;(2)解:AE+CE=BE.∵∠BAD+∠DAC=60°,∠CAE+∠DAC=60°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠AEC=∠ADB=120°,∴BE=BD+DE=AE+CE,∠BEC=∠AEC﹣∠AED=60°.15.(2021秋•香洲区期中)如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向B点以2cm/s的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,△PBQ为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?【解答】解:(1)∵△ABC是等边三角形,∴BC=AB=9cm,∵点P的速度为2cm/s,时间为ts,∴CP=2t,则PB=BC﹣CP=(9﹣2t)cm;∵点Q的速度为5cm/s,时间为ts,∴BQ=5t;(2)若△PBQ为等边三角形,则有BQ=BP,即9﹣2t=5t,解得t=,所以当t=s时,△PBQ为等边三角形;(3)设ts时,Q与P第一次相遇,根据题意得:5t﹣2t=18,解得t=6,则6s时,两点第一次相遇.当t=6s时,P走过得路程为2×6=12cm,而9<12<18,即此时P在AB边上,则两点在AB上第一次相遇.16.(西城区校级期中)如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.【解答】解:(1)EC=BD,理由为:∵△ABE和△ACD都为等边三角形,∴∠EAB=∠DAC=60°,AE=AB,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△AEC和△ABD中,,∴△AEC≌△ABD(SAS),∴EC=BD;(2)BD和CE的夹角大小为60°,若改变△ABC的形状,这个夹角的度数不变,理由为:∵△ADC为等边三角形,∴∠ADC=∠ACD=60°,∵△AEC≌△ABD,∴∠ACE=∠ADB,∵∠EOD为△COD的外角,∴∠EOD=∠ODC+∠OCD=∠ODC+∠ACD+∠ACE=∠ODC+∠ADB+∠ACD=∠ADC+∠ACD=120°,即∠DOC=60°,则BD和CE的夹角大小为60°.17.(垦利区期中)如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.(1)求证:△BCE≌△ACD;(2)求证:FH∥BD.【解答】证明:(1)∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,∴在△BCE和△ACD中,∵,∴△BCE≌△ACD (SAS).(2)由(1)知△BCE≌△ACD,则∠CBF=∠CAH,BC=AC又∵△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,∴∠ACH=180°﹣∠ACB﹣∠HCD=60°=∠BCF,在△BCF和△ACH中,∵,∴△BCF≌△ACH (ASA),∴CF=CH,又∵∠FCH=60°,∴△CHF为等边三角形∴∠FHC=∠HCD=60°,∴FH∥BD.18.(重庆模拟)如图,等边△ABC的边长为4,BD为AC边上的中线,E为BC边上一点(不与B、C重合).(1)如图1,若DE⊥BC,连接AE,求AE的长;(2)如图2,若DE平分∠BDC,求BE的长;(3)如图3,连接AE,交BD于点M.以AM为边作等边△AMN,连接BN.请猜想∠CAE、∠CBD、∠BMN之间的数量关系,并证明你的结论.【解答】解:(1)如图1,过A作AF⊥于F,∵等边△ABC的边长为4,BD为AC边上的中线,∴CD=AC=2,∠C=60°,∵∠AFC=90°∴∠CAF=30°,∴CF=AC=2,∴CE=CD=1,AF=2,∴EF=1,∴AE===;(2)如图2,过E作EM⊥CD于M,∵等边△ABC的边长为4,BD为AC边上的中线,∴CD=AC=2,∠C=60°,BD⊥AC,∵DE平分∠BDC,∴∠EDM=45°,∴EM=DM,CM=EM=DM,∴DM+CM=(1+)EM=CD=2,∴EM=3﹣,∴CE=2﹣2,∴BE=BC﹣CE=6﹣2;(3)∠CAE+∠CBD=∠BMN,证明:∵∠ADM=90°,∵△AMN是等边三角形,∴∠AMN=60°,∴∠BMN+∠BME=120°,∵∠BME=∠AMD=90°﹣∠EAC,∴∠BMN+90°﹣∠EAC=120°,∴∠BMN﹣∠CAE=30°,∵∠DBC=30°,∴∠BMN﹣∠CAE=∠DBC,即∠CAE+∠CBD=∠BMN.