【真题汇总卷】湖南省湘潭市中考数学三年高频真题汇总 卷(Ⅰ)(含答案解析)
展开
这是一份【真题汇总卷】湖南省湘潭市中考数学三年高频真题汇总 卷(Ⅰ)(含答案解析),共29页。试卷主要包含了下列图形是全等图形的是,下列运算正确的是,抛物线的顶点为等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
A.75°B.70°C.65°D.55°
2、已知反比例函数经过平移后可以得到函数,关于新函数,下列结论正确的是( )
A.当时,y随x的增大而增大B.该函数的图象与y轴有交点
C.该函数图象与x轴的交点为(1,0)D.当时,y的取值范围是
3、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
A.abB.a+bC.abD.a
4、下列图形是全等图形的是( )
A.B.C.D.
5、下列运算正确的是( )
A.B.C.D.
6、用符号表示关于自然数x的代数式,我们规定:当x为偶数时,;当x为奇数时,.例如:,.设,,,…,.以此规律,得到一列数,,,…,,则这2022个数之和等于( )
A.3631B.4719C.4723D.4725
7、如图,已知与都是以A为直角顶点的等腰直角三角形,绕顶点A旋转,连接.以下三个结论:①;②;③;其中结论正确的个数是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.1B.2C.3D.0
8、抛物线的顶点为( )
A.B.C.D.
9、如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
A.B.C.D.
10、已知,则的补角等于( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若反比例函数的图象位于第一、第三象限,则的取值范围是_______.
2、如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行.反比例函数y=(k≠0)的图象,与大正方形的一边交于点A(,4),且经过小正方形的顶点B.求图中阴影部分的面积为 _____.
3、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点,则点A的坐标是__________.
4、如图,小张同学用两个互相垂直的长方形制作了一个“中”字,请根据图中信息用含x的代数式表示该“中”字的面积__________.
5、观察下列图形,它们是按一定规律排列的,按此规律,第2022个图形中“○”的个数为______.
三、解答题(5小题,每小题10分,共计50分)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、如图,在平面直角坐标系中,抛物线与轴交于两点与轴交于点C,点M是抛物线的顶点,抛物线的对称轴与BC交于点D,与轴交于点E.
(1)求抛物线的对称轴及B点的坐标
(2)如果,求抛物线的表达式;
(3)在(2)的条件下,已知点F是该抛物线对称轴上一点,且在线段的下方,,求点的坐标
2、我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图1,在△ABC中,AB=AC,的值为△ABC的正度.
已知:在△ABC中,AB=AC,若D是△ABC边上的动点(D与A,B,C不重合).
(1)若∠A=90°,则△ABC的正度为 ;
(2)在图1,当点D在腰AB上(D与A、B不重合)时,请用尺规作出等腰△ACD,保留作图痕迹;若△ACD的正度是,求∠A的度数.
(3)若∠A是钝角,如图2,△ABC的正度为,△ABC的周长为22,是否存在点D,使△ACD具有正度?若存在,求出△ACD的正度;若不存在,说明理由.
3、第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:
(1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;
(2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;
(3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?
4、在数轴上,点A,B分别表示数a,b,且,记.
(1)求AB的值;
(2)如图,点P,Q分别从点A,B;两点同时出发,都沿数轴向右运动,点P的速度是每秒4个单· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
位长度,点Q的速度是每秒1个单位长度,点C从原点出发沿数轴向右运动,速度是每秒3个单位长度,运动时间为t秒.
①请用含t的式子分别写出点P、点Q、点C所表示的数;
②当t的值是多少时,点C到点P,Q的距离相等?
5、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题:
(1)本次调查共抽取了多少名学生?
(2)①请补全条形统计图;
②求出扇形统计图中表示“及格”的扇形的圆心角度数.
(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?
-参考答案-
一、单选题
1、B
【分析】
直接根据圆周角定理求解.
【详解】
解:,
.
故选:B.
【点睛】
本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
2、C
【分析】
函数的图象是由函数的图象向下平移1个单位长度后得到的,根据两个函数的图像,可排除A,B,C选项,将y=0代入函数可得到函数与x轴交点坐标为(1,0),故C选项正确.
【详解】
解:函数与函数的图象如下图所示:
函数的图象是由函数的图象向下平移1个单位长度后得到的,
A、由图象可知函数,当时,y随x的增大而减小,选项说法错误,与题意不符;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
B、函数的图象是由函数的图象向下平移一个单位后得到的,所以函数与y轴无交点,选项说法错误,与题意不符;
C、将y=0代入函数中得,,解得,故函数与x轴交点坐标为(1,0),选项说法正确,与题意相符;
D、当时, ,有图像可知当时,y的取值范围是,故选项说法错误,与题意不符;
故选:C.
【点睛】
本题考查反比例函数的图象,以及函数图象的平移,函数与数轴的交点求法,能够画出图象,并掌握数形结合的方法是解决本题的关键.
3、B
【分析】
先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.
【详解】
解:∵△ABC、△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵AF=CF,
∴∠ABD=∠CBD=∠ACE=30°,
∴点E在射线CE上运动(∠ACE=30°),
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
∵CA=CM,∠ACM=60°,
∴△ACM是等边三角形,
∴△ACM≌△ACB,
∴FM=FB=b,
∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
故选:B.
【点睛】
此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
4、D
【详解】
解:A、不是全等图形,故本选项不符合题意;
B、不是全等图形,故本选项不符合题意;
C、不是全等图形,故本选项不符合题意;
D、全等图形,故本选项符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:D
【点睛】
本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.
5、C
【分析】
根据合并同类项法则解答即可.
【详解】
解:A、3x和4y不是同类项,不能合并,故A选项错误;
B、,故B选项错误;
C、,故C选项正确;
D、,故D选项错误,
故选:C.
【点睛】
本题考查合并同类项,熟练掌握合并同类项法则是解答的关键.
6、D
【分析】
根据题意分别求出x2=4,x3=2,x4=1,x5=4,…,由此可得从x2开始,每三个数循环一次,进而继续求解即可.
【详解】
解:∵x1=8,
∴x2=f(8)=4,
x3=f(4)=2,
x4=f(2)=1,
x5=f(1)=4,
…,
从x2开始,每三个数循环一次,
∴(2022-1)÷3=6732,
∵x2+x3+x4=7,
∴=8+673×7+4+2=4725.
故选:D.
【点睛】
本题考查数字的变化规律,能够通过所给的数,通过计算找到数的循环规律是解题的关键.
7、B
【分析】
证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依据,推出,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,∠ACB=45°,求出∠BMC=90°,即可判断③正确.
【详解】
解:∵与都是以A为直角顶点的等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴,故①正确;
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∵,
∴,
∴不成立,故②错误;
设BD交CE于M,
∵∠ACE+∠DBC=45°,∠ACB=45°,
∴∠BMC=90°,
∴,故③正确,
故选:B.
【点睛】
此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键.
8、B
【分析】
根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
【详解】
解:∵y=2(x-1)2+3,
∴抛物线的顶点坐标为(1,3),
故选:B.
【点睛】
本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
9、C
【分析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
【详解】
解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴,解得AD=10,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=CM+MD+CD=AD+.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:C.
【点睛】
本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
10、C
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
二、填空题
1、
【解析】
【分析】
根据反比例函数的性质解答.
【详解】
解:∵反比例函数的图象位于第一、第三象限,
∴k-1>0,
∴,
故答案为:.
【点睛】
此题考查了反比例函数的性质:当k>0时,函数图象的两个分支分别在第一、三象限内;当k
相关试卷
这是一份【真题汇总卷】湖南省汨罗市中考数学三年高频真题汇总卷(含详解),共37页。试卷主要包含了下列等式变形中,不正确的是,单项式的次数是,如图,有三块菜地△ACD,下列图形是全等图形的是等内容,欢迎下载使用。
这是一份【真题汇总卷】湖南省衡阳市中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析),共27页。试卷主要包含了代数式的意义是,有理数 m,一元二次方程的根为.等内容,欢迎下载使用。
这是一份【真题汇总卷】湖南省中考数学五年真题汇总 卷(Ⅲ)(含答案解析),共27页。试卷主要包含了下列式子中,与是同类项的是等内容,欢迎下载使用。