【真题汇总卷】湖南省湘潭市中考数学第二次模拟试题(含答案详解)
展开
这是一份【真题汇总卷】湖南省湘潭市中考数学第二次模拟试题(含答案详解),共27页。试卷主要包含了下列函数中,随的增大而减小的是,下列图像中表示是的函数的有几个等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、代数式的意义是( )
A.a与b的平方和除c的商B.a与b的平方和除以c的商
C.a与b的和的平方除c的商D.a与b的和的平方除以c的商
2、一元二次方程的根为( ).
A.B.
C.,D.,
3、如图,①,②,③,④可以判定的条件有( ).
A.①②④B.①②③C.②③④D.①②③④
4、有理数在数轴上对应点的位置如图所示,下列结论中正确是( )
A.B.C.D.
5、已知单项式5xayb+2的次数是3次,则a+b的值是( )
A.1B.3C.4D.0
6、已知直线与双曲线相交于,两点,若点的坐标为,则点的坐标为( )
A.B.C.D.
7、下列函数中,随的增大而减小的是( )
A.B.
C.D.
8、下列图像中表示是的函数的有几个( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.1个B.2个C.3个D.4个
9、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
A.B.C.D.
10、下列图形中,能用,,三种方法表示同一个角的是( )
A.B.
C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在日常生活和生产中有很多现象可以用数学知识进行解释.如图,要把一根挂衣帽的挂钩架水平固定在墙上,至少需要钉______个钉子.用你所学数学知识说明其中的道理______.
2、如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、和校验码”.
其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:
步骤1:计算前12位数字中偶数位数字的和,即;
步骤2:计算前12位数字中奇数位数字的和,即;
步骤3:计算与的和,即;
步骤4:取大于或等于且为10的整数倍的最小数,即中;
步骤5:计算与的差就是校验码X,即.
如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是______.
3、如图,Rt △ABC,∠B=90∘,∠BAC=72°,过C作CF∥AB,联结 AF 与 BC 相交于点 G,若 GF=2AC,则 ∠BAG=_____________°.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、多项式3x2﹣2xy2+xyz3的次数是 ___.
5、计算:______.
三、解答题(5小题,每小题10分,共计50分)
1、已知一次函数y=-3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).
(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.求点E的坐标;
(2)△AOB与△FOD是否全等,请说明理由;
(3)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.
2、已知关于x的一元二次方程x2−(2m−2)x+(m2−2m)=0.
(1)请说明该方程实数根的个数情况;
(2)如果方程的两个实数根为x1,x2,且(x1+1)⋅(x2+1)=8,求m的值.
3、如图,在中,,于点,为边上一点,连接与交于点.为外一点,满足,,连接.
(1)求证:;
(2)求证:.
4、如图, 已知在 Rt 中, , 点 为射线 上一动点, 且 , 点 关于直线 的对称点为点 , 射线 与射线 交于点 .
(1)当点 在边 上时,
① 求证: ;
②延长 与边 的延长线相交于点 , 如果 与 相似,求线段 的长;
(2)联结 , 如果 , 求 的值.
5、如图,在的正方形格纸中,是以格点为顶点的三角形,也称为格点三角形,请你在该正方形格纸中画出与成轴对称的所有的格点三角形(用阴影表示).
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
-参考答案-
一、单选题
1、D
【分析】
(a+b)2表示a与b的和的平方,然后再表示除以c的商.
【详解】
解:代数式的意义是a与b的和的平方除以c的商,
故选:D.
【点睛】
此题主要考查了代数式的意义,关键是根据计算顺序描述.
2、A
【分析】
根据方程特点,利用直接开平方法,先把方程两边开方,即可求出方程的解.
【详解】
解:,
两边直接开平方,得,
则.
故选:A.
【点睛】
此题主要考查了直接开平方法解一元二次方程,解题的关键是掌握直接开平方法的基本步骤及方法.
3、A
【分析】
根据平行线的判定定理逐个排查即可.
【详解】
解:①由于∠1和∠3是同位角,则①可判定;
②由于∠2和∠3是内错角,则②可判定;
③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
④①由于∠2和∠5是同旁内角,则④可判定;
即①②④可判定.
故选A.
【点睛】
本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
4、C
【分析】
利用数轴,得到,,然后对每个选项进行判断,即可得到答案.
【详解】
解:根据数轴可知,,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,故A错误;
,故B错误;
,故C正确;
,故D错误;
故选:C
【点睛】
本题考查了数轴,解题的关键是由数轴得出,,本题属于基础题型.
5、A
【分析】
根据单项式的次数的概念求解.
【详解】
解:由题意得:a+b+2=3,
∴a+b=1.
故选:A.
【点睛】
本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.
6、A
【分析】
首先把点A坐标代入,求出k的值,再联立方程组求解即可
【详解】
解:把A代入,得:
∴k=4
∴
联立方程组
解得,
∴点B坐标为(-2,-2)
故选:A
【点睛】
本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握代入法.
7、C
【分析】
根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
【详解】
解:A.在中,y随x的增大而增大,故选项A不符合题意;
B.在中,y随x的增大与增大,不合题意;
C.在中,当x>0时,y随x的增大而减小,符合题意;
D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
故选:C.
【点睛】
本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
8、A
【分析】
函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
【详解】
解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
故第2个图符合题意,其它均不符合,
故选:A.
【点睛】
本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
9、B
【分析】
根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
【详解】
解:∵ADBC,
∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
∴,故A正确,不符合题意;
∵ADBC,
∴△DOE∽△BOF,
∴,
∴,
∴,故B错误,符合题意;
∵ADBC,
∴△AOD∽△COB,
∴,
∴,故C正确,不符合题意;
∴ ,
∴,故D正确,不符合题意;
故选:B
【点睛】
本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
10、A
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
二、填空题
1、 2 两点确定一条直线
【解析】
【分析】
根据两点确定一条直线解答.
【详解】
解:至少需要钉2个钉子,所学的数学知识为:两点确定一条直线,
故答案为:2,两点确定一条直线.
【点睛】
此题考查了线段的性质:两点确定一条直线,熟记性质是解题的关键.
2、4
【解析】
【分析】
设被污染的两个数字中左边的数字为x,则右边的数为5-x,然后根据题中所给算法可进行求解.
【详解】
解:设被污染的两个数字中左边的数字为x,则右边的数为5-x,由题意得:
,
,
,
∵d为10的整数倍,且,
∴或110,
∵由图可知校验码为9,
∴当时,则有,解得:,则有右边的数为5-1=4;
当时,则有,解得:,不符合题意,舍去;
∴被污染的两个数字中右边的数字是4;
故答案为4.
【点睛】
本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
3、24
【解析】
【分析】
取FG的中点E,连接EC,根据直角三角形斜边上的中线等于斜边的一半可得EC=AC,从而可推出∠EAC=∠AEC=∠F+∠ECF=2∠F,已知,∠BAC=72°,则不难求得∠BAG的度数.
【详解】
解:如图,取FG的中点E,连接EC.
∵FC∥AB,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠GCF=90°,
∴EC=FG=AC,
∴∠EAC=∠AEC=∠F+∠ECF=2∠F,
设∠BAG=x,则∠F=x,
∵∠BAC=72°,
∴x+2x=72°,
∴x=24°,
∴∠BAG=24°,
故答案为:24.
【点睛】
本题考查了直角三角形斜边上的中线,平行线的性质以及角的计算,解题的关键是构造三个等腰三角形.直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.
4、5
【解析】
【分析】
根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数解答.
【详解】
解:多项式3x2﹣2xy2+xyz3的次数是5.
故答案为:5.
【点睛】
本题考查的是多项式的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.
5、-1
【解析】
【分析】
根据有理数减法法则计算即可.
【详解】
解:,
故答案为:-1.
【点睛】
本题考查了有理数减法,解题关键是熟记有理数减法法则,准确计算.
三、解答题
1、
(1)E(,)
(2)△AOB≌△FOD,理由见详解;
(3)P(0,-3)或(4,1)或(,).
【分析】
(1)连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,首先求出点A,点B,点C,点D的坐标,然后根据点E到两坐标轴的距离相等,得到OE平分∠BOC,进而求出点E的坐标即可;
(2)首先求出直线DE的解析式,得到点F的坐标,即可证明△AOB≌△FOD;
(3)首先求出直线GC的解析式,求出AB的长,设P(m,m-3),分类讨论①当AB=AP时,②当AB=BP时,③当AP=BP时,分别求出m的值即可解答.
(1)
解: 连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
当y=0时,-3x+3=0,
解得x=1,
∴A(1,0),
当x=0时,y=3,
∴OB=3,B(0,3),
∵点D与点C关于y轴对称,C(3,0),OC=3,
∴D(-3,0),
∵点E到两坐标轴的距离相等,
∴EG=EH,
∵EH⊥OC,EG⊥OC,
∴OE平分∠BOC,
∵OB=OC=3,
∴CE=BE,
∴E为BC的中点,
∴E(,);
(2)
解: △AOB≌△FOD,
设直线DE表达式为y=kx+b,
则,
解得:,
∴y=x+1,
∵F是直线DE与y轴的交点,
∴F(0,1),
∴OF=OA=1,
∵OB=OD=3,∠AOB=∠FOD=90°,
∴△AOB≌△FOD;
(3)
解:∵点G与点B关于x轴对称,B(0,3),
∴点G(0,-3),
∵C(3,0),
设直线GC的解析式为:y=ax+c,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得:,
∴y=x-3,
AB== ,
设P(m,m-3),
①当AB=AP时,
=
整理得:m2-4m=0,
解得:m1=0,m2=4,
∴P(0,-3)或(4,1),
②当AB=BP时,=
m2-6m+13=0,
△<0
故不存在,
③当AP=BP时,
=,
解得:m=,
∴P(, ),
综上所述P(0,-3)或(4,1)或(,),
【点睛】
此题主要考查待定系数法求一次函数,一次函数与坐标轴的交点,全等三角形的判定,勾股定理.
2、
(1)方程有两个不相等的实数根
(2)m=3或-3
【分析】
(1)根据根的判别式先求出Δ的值,再判断即可;
(2)根据根与系数的关系得出x1+x2=2m-2,x1•x2=m2-2m,代入计算即可求出答案.
(1)
解:∵a=1,b=−(2m−2),c= m2−2m,
∴ =2-4(m2-2m)=4m2-8m+4-4m2+8m=4>0,
∴方程有两个不相等的实数根;
(2)
解:∵(x1+1)⋅(x2+1)=8,
整理得x1x2+(x1+x2)+1=8,
∵x1+x2=2m-2,x1x2=m2-2m,
∴m2-2m+2m-2+1=8,
∴m2=9,
∴m=3或m=-3.
【点睛】
本题考查了根的判别式以及根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法.
3、
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)见解析
(2)见解析
【分析】
(1)如图,先证明,再根据全等三角形的判定证明结论即可;
(2)根据全等三角形的性质和等腰三角形的三线合一证明,再根据全等三角形的判定与性质证明即可.
(1)
证明:(1)证明:∵,
∴,
即,
在和中,
∵,
∴;
(2)
证明:∵,
∴,,
∵,于点,
∴.
∵,
∴,
在和中,
∵,
∴,
∴,
∴.
【点睛】
本题考查全等三角形的判定与性质、等腰三角形的性质,熟练掌握全等三角形的判定与性质是解答的关键.
4、
(1)①见解析;②
(2)3或4
【分析】
(1)① 如图1,连接CE,DE,根据题意,得到CB=CE=CA,利用等腰三角形的底角与顶角的关系,三角形外角的性质,可以证明;
②连接BE,交CD于定Q,利用三角形外角的性质,确定△DCB∽△BGE,利用相似,证明△ABG是等腰三角形,△ABE是等腰三角形,△BEF是等腰直角三角形,用BE表示GE,后用相似三角形的性质求解即可;
(2)分点D在AB上和在AB的延长上,两种情形,运用等腰三角形的性质,勾股定理分别计算即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
① 如图1,连接CE,DE,
∵点B关于直线CD的对称点为点E,
∴CE=CB,BD=DE,∠ECD=∠BCD,∠ACE=90°-2∠ECD,
∵AC=BC,
∴AC=EC,
∴∠AEC=∠ACE,
∵2∠AEC=180°-∠ACE=180°-90°+2∠ECD,
∴∠AEC=45°+∠ECD,
∵∠AEC=∠AFC +∠ECD,
∴∠AEC=45°+∠ECD=∠AFC +∠ECD,
∴∠AFC=45°;
②连接BE,交CD于定Q,
根据①得∠EAB =∠DCB,∠AFC=45°,
∵点B关于直线CD的对称点为点E,
∴∠EFC=∠BFC=45°,CF⊥BE,
∴BF⊥AG,△BEF是等腰直角三角形, BF=EF,
∵∠BEG>∠EAB,与 相似,
∴△DCB∽△BGE,
∴∠EAB =∠DCB=∠BGE,∠DBC=∠BEG=45°,
∴AB=BG,∠EAB+∠EBA=∠EAB+∠BGE,
∴∠EAB=∠EBA=∠BGE,
∴AE=BE=BF=EF,
∵BF⊥AG,
∴AF=FG=AE+EF=BE+EF=BE+BE=BE,
∴GE=EF+FG=BE+BE= BE,
∴=,
∵△DCB∽△BGE,
∴,
∴,
∴BD==,
(2)
过点C作CM⊥AE,垂足为M,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据①②知,△ACE是等腰三角形,△BEF是等腰直角三角形,
∴AM=ME,BF⊥AF,
设AM=ME=x,CM=y,
∵AC=BC=5,∠ACB=90°,,
∴,AB=,xy=12,
∴
==49,
∴x+y=7或x+y=-7(舍去);
∴
==1,
∴x-y=1或x-y=-1;
∴或
∴或
∴或
∴AE=8或AE=6,
当点D在AB上时,如图3所示,AE=6,
设BF=EF=m,
∴,
∴,
解得m=1,m=-7(舍去),
∴=3;
当点D在AB的延长线上时,如图4所示,AE=8,
设BF=EF=n,
∴,
∴,
解得n=1,n=7(舍去),
∴=4;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴或.
【点睛】
本题考查了轴对称的性质,等腰直角三角形的判定性质,等腰三角形的判定和性质,完全平方公式,勾股定理,三角形相似的判定和性质,一元二次方程的解法,分类思想,熟练掌握勾股定理,三角形的相似,一元二次方程的解法是解题的关键.
5、见详解
【分析】
先找对称轴,再得到个点的对应点,即可求解.
【详解】
解:根据题意画出图形,如下图所示:
【点睛】
本题主要考查了画轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
相关试卷
这是一份【真题汇总卷】湖南省常德市中考数学第二次模拟试题(含详解),共26页。试卷主要包含了已知,则的补角等于等内容,欢迎下载使用。
这是一份【真题汇总卷】湖南省中考数学模拟真题测评 A卷(含答案详解),共26页。试卷主要包含了一元二次方程的根为等内容,欢迎下载使用。
这是一份【中考特训】湖南省湘潭市中考数学五年真题汇总 卷(Ⅲ)(含答案详解),共31页。试卷主要包含了下列各式中,不是代数式的是等内容,欢迎下载使用。