备考练习广西来宾市中考数学三年高频真题汇总 卷(Ⅰ)(含详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )
A.1B.2020C.2021D.2022
2、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )
A.将沿轴翻折得到
B.将沿直线翻折,再向下平移个单位得到
C.将向下平移个单位,再沿直线翻折得到
D.将向下平移个单位,再沿直线翻折得到
3、为了完成下列任务,你认为最适合采用普查的是( )
A.了解某品牌电视的使用寿命B.了解一批西瓜是否甜
C.了解某批次烟花爆竹的燃放效果D.了解某隔离小区居民新冠核酸检查结果
4、不等式的最小整数解是( )
A.B.3C.4D.5
5、如图,①,②,③,④可以判定的条件有( ).
A.①②④B.①②③C.②③④D.①②③④
6、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.10B.11C.12D.13
7、如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2),再分别连接图(2)中间的小三角形三边中点得到图(3),按这种方法继续下去,第6个图形有( )个三角形.
A.20B.21C.22D.23
8、如图,点F在BC上,BC=EF,AB=AE,∠B=∠E,则下列角中,和2∠C度数相等的角是( )
A.B.C.D.
9、有理数 m、n 在数轴上的位置如图,则(m+n)(m+2n)(m﹣n)的结果的为( )
A.大于 0B.小于 0C.等于 0D.不确定
10、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,正方形 边长为 ,则 _____________
2、如图,在△ABC中,CD⊥AB,垂足为D,CE为△ACD的角平分线. 若CD=8,BC=10,且△BCE的面积为32,则点E到直线AC的距离为________.
3、如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、和校验码”.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:
步骤1:计算前12位数字中偶数位数字的和,即;
步骤2:计算前12位数字中奇数位数字的和,即;
步骤3:计算与的和,即;
步骤4:取大于或等于且为10的整数倍的最小数,即中;
步骤5:计算与的差就是校验码X,即.
如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是______.
4、2020年10月,华为推出了高端手机,它搭载的麒麟9900芯片是全球第一颗,也是唯一一颗采用5纳米工艺制造的,集成了153亿个晶体管,比苹果的芯片多了,是目前世界上晶体管最多、功能最完整的.其中“153亿”这个数据用科学记数法可以表示为__.
5、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.
三、解答题(5小题,每小题10分,共计50分)
1、已知关于的二次函数.
(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;
(2)若,两点在该二次函数的图象上,直接写出与的大小关系;
(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值.
2、已知四边形 是菱形, , 点 在射线 上, 点 在射线 上,且 .
(1)如图, 如果 , 求证: ;
(2)如图, 当点 在 的延长线上时, 如果 , 设 , 试建立 与 的函数关系式,并写出 的取值范围
(3)联结 , 当 是等腰三角形时,请直接写出 的长.
3、如图,点A在的一边OA上.按要求画图并填空.
(1)过点A画直线,与的另一边相交于点B;
(2)过点A画OB的垂线AC,垂足为点C;
(3)过点C画直线,交直线AB于点D;
(4)直接写出______°;
(5)如果,,,那么点A到直线OB的距离为______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、在等腰中,,,点在直线上.
(1)如图1所示,点在上,点是的中点,连接.若,,求的周长;
(2)如图2所示,点在的延长线上,连接,过点作的垂线交于点.点在上,于点,连接.若,,求证:;
(3)如图3所示,点、在边上,连接、,,点是的中点,连接,与交于点.将沿着翻折,点的对应点是点,连接.若,,请直接写出的面积.
5、如图,在中,,将绕点C旋转得到,连接AD.
(1)如图1,点E恰好落在线段AB上.
①求证:;
②猜想和的关系,并说明理由;
(2)如图2,在旋转过程中,射线BE交线段AC于点F,若,,求CF的长.
-参考答案-
一、单选题
1、D
【分析】
根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.
【详解】
解:如图,
由题意得:SA=1,
由勾股定理得:SB+SC=1,
则 “生长”了1次后形成的图形中所有的正方形的面积和为2,
同理可得:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
“生长”了2次后形成的图形中所有的正方形面积和为3,
“生长”了3次后形成的图形中所有正方形的面积和为4,
……
“生长”了2021次后形成的图形中所有的正方形的面积和是2022,
故选:D
【点睛】
本题考查了勾股数规律问题,找到规律是解题的关键.
2、C
【分析】
根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.
【详解】
解:A、根据图象可得:将沿x轴翻折得到,作图正确;
B、作图过程如图所示,作图正确;
C、如下图所示为作图过程,作图错误;
D、如图所示为作图过程,作图正确;
故选:C.
【点睛】
题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.
3、D
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;
D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.
故选:D.
【点睛】
本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
4、C
【分析】
先求出不等式解集,即可求解.
【详解】
解:
解得:
所以不等式的最小整数解是4.
故选:C.
【点睛】
本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.
5、A
【分析】
根据平行线的判定定理逐个排查即可.
【详解】
解:①由于∠1和∠3是同位角,则①可判定;
②由于∠2和∠3是内错角,则②可判定;
③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
④①由于∠2和∠5是同旁内角,则④可判定;
即①②④可判定.
故选A.
【点睛】
本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
6、A
【分析】
作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
【详解】
解:如图,作正多边形的外接圆,连接AO,BO,
∴∠AOB=2∠ADB=36°,
∴这个正多边形的边数为=10.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:A.
【点睛】
此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
7、B
【分析】
由第一个图中1个三角形,第二个图中5个三角形,第三个图中9个三角形,每次递增4个,即可得出第n个图形中有(4n-3)个三角形.
【详解】
解:由图知,第一个图中1个三角形,即(4×1-3)个;
第二个图中5个三角形,即(4×2-3)个;
第三个图中9个三角形,即(4×3-3)个;
…
∴第n个图形中有(4n-3)个三角形.
∴第6个图形中有个三角形
故选B
【点睛】
本题考查了图形变化的一般规律问题.能够通过观察,掌握其内在规律是解题的关键.
8、D
【分析】
根据SAS证明△AEF≌△ABC,由全等三角形的性质和等腰三角形的性质即可求解.
【详解】
解:在△AEF和△ABC中,
,
∴△AEF≌△ABC(SAS),
∴AF=AC,∠AFE=∠C,
∴∠C=∠AFC,
∴∠EFC=∠AFE+∠AFC=2∠C.
故选:D.
【点睛】
本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.
9、A
【分析】
从数轴上看出,判断出,进而判断的正负.
【详解】
解:由题意知:
∴
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选A.
【点睛】
本题考查了有理数加减的代数式正负的判断.解题的关键在于正确判断各代数式的正负.
10、D
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
二、填空题
1、##
【解析】
【分析】
根据正方形的性质可得,过E作EG⊥BC于G,证明三角形EGC是等腰直角三角形,再根据直角三角形BEG利用勾股定理列方程即可.
【详解】
过E作EG⊥BC于G
∵正方形 边长为2
∴,
∵
∴
∴三角形EGC是等腰直角三角形
∴,
在Rt△BEG中,
∴
解得:
∴
∴
【点睛】
本题考查正方形的性质及勾股定理,解题的关键是证明三角形EGC是等腰直角三角形,最终根据勾股定理列方程计算即可.
2、2
【解析】
【分析】
过点E作EF⊥AC于点F,根据角平分线的性质定理可得DE=EF,再由勾股定理可得BD=6,然后根据· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
△BCE的面积为32,可得BE=8,即可求解.
【详解】
解:如图,过点E作EF⊥AC于点F,
∵CE为△ACD的角平分线.CD⊥AB,
∴DE=EF,
在 中,CD=8,BC=10,
∴ ,
∵△BCE的面积为32,
∴ ,
∴BE=8,
∴EF=DE=BE-BD=2,
即点E到直线AC的距离为2.
故答案为:2
【点睛】
本题主要考查了角平分线的性质定理,勾股定理,熟练掌握角平分线的性质定理,勾股定理是解题的关键.
3、4
【解析】
【分析】
设被污染的两个数字中左边的数字为x,则右边的数为5-x,然后根据题中所给算法可进行求解.
【详解】
解:设被污染的两个数字中左边的数字为x,则右边的数为5-x,由题意得:
,
,
,
∵d为10的整数倍,且,
∴或110,
∵由图可知校验码为9,
∴当时,则有,解得:,则有右边的数为5-1=4;
当时,则有,解得:,不符合题意,舍去;
∴被污染的两个数字中右边的数字是4;
故答案为4.
【点睛】
本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
4、
【解析】
【分析】
科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
153亿.
故答案为:.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.
5、140
【解析】
【分析】
先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.
【详解】
解:由题意,可得∠AOB=40°,
则∠AOB的补角的大小为:180°−∠AOB=140°.
故答案为:140.
【点睛】
本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.
三、解答题
1、
(1)见解析
(2)
(3)的值为1或-5
【分析】
(1)计算判别式的值,得到,即可判定;
(2)计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;
(3)先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可.
(1)
证明:令,则
∴
∴不论为何实数,方程有两个不相等的实数根
∴无论为何实数,该二次函数的图象与轴总有两个公共点
(2)
解:二次函数的对称轴为:直线
∵,抛物线开口向上
∴抛物线上的点离对称轴越远对应的函数值越大
∵
∴M点到对称轴的距离为:1
N点到对称轴的距离为:2
∴
(3)
解:∵抛物线
∴沿轴翻折后的函数解析式为
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴该抛物线的对称轴为直线
①若,即,则当时,有最小值
∴
解得,
∵
∴
②若,即,则当时,有最小值-1
不合题意,舍去
③若,,则当时,有最小值
∴
解得,
∵
∴
综上,的值为1或-5
【点睛】
本题考查了抛物线与x轴的交点以及二次函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键.
2、
(1)证明过程详见解答;
(2)
(3)或
【分析】
(1)先证明四边形是正方形,再证明,从而命题得证;
(2)在上截取,先证明是正三角形,再证明,进一步求得结果;
(3)当时,作于,以为圆心,为半径画弧交于,作于,证明,,可推出,再证明,可推出,从而求得,当时,作于,以为圆心,为半径画弧交于,作于,作于,先根据求得,进而求得,根据,,和,从而求得,根据三角形三边关系否定,从而确定的结果.
(1)
解:证明:四边形是菱形,,
菱形是正方形,
,,
,
,
;
(2)
解:如图1,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在上截取,
四边形是菱形,
,,
是正三角形,
,,
,,
,
,
,
;
(3)
如图2,
当时,作于,以为圆心,为半径画弧交于,作于,
,,,,
,
四边形是菱形,
,
,,
,
①,
,
,
,
②,
由①②得,
,
,
如图3,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
当时,作于,以为圆心,为半径画弧交于,作于,
作于,
,
,
由得,
,
,
,
由第一种情形知:,,
,,
①,②,
由①②得,
,
,
,
,
即,
综上所述:或.
【点睛】
本题考查了菱形性质,正方形的判定和性质,相似三角形的判定和性质,面积法等知识,解题的关键是作辅助线,构造相似三角形.
3、(1)图见解析;(2)图见解析;(3)图见解析;(4)90;(5).
【分析】
(1)根据垂线的画法即可得;
(2)根据垂线的画法即可得;
(3)根据平行线的画法即可得;
(4)根据平行线的性质可得;
(5)利用三角形的面积公式即可得.
【详解】
解:(1)如图,直线即为所求;
(2)如图,垂线即为所求;
(3)如图,直线即为所求;
(4),
,
,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:90;
(5),
,即,
解得,
即点到直线的距离为,
故答案为:.
【点睛】
本题考查了画垂线和平行线、平行线的性质、点到直线的距离等知识点,熟练掌握平行线的画法和性质是解题关键.
4、
(1)
(2)见解析
(3)
【分析】
(1)过点作于点,根据,设,则,进而根据等腰直角三角形的性质表示出,根据勾股定理求得,进而求得的值,即可求得的周长;
(2)过点作,垂足为,证明,设交于点,过点作交于,连接,证明四边形,是平行四边形,可得,又,进而即可得证;
(3)过点作,连接,延长交于点,连接,,根据翻折的性质可得,点是的中点,,,可得,根据等底同高,进而证明,即可得则,根据相似三角形的性质以及正弦的定义可得,再根据相似三角形的性质可得,进而即可求得
(1)
如图,过点作于点,
,,
设,则
在中,
是的中点
在中,,,
在中,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
的周长为
的周长为
(2)
如图,过点作,垂足为,
在中,,,
,,
在与中
设交于点,过点作交于,连接,如图,
是的高,
垂直平分
,
,
又
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
又
又
四边形是平行四边形
又
四边形是平行四边形
(3)
如图,过点作,连接,延长交于点,连接,,
翻折
,,
点是的中点,
,
,
又
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
设
,
是的中点,
在中,
如图,过点作
又是的中点,
又
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
是的中点,是的中点
,为的中点
设,则,
【点睛】
本题考查了解直角三角形,平行四边形的性质与判定,直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质与判定,轴对称的性质,勾股定理,相似三角形的性质与判定,掌握等腰直角三角形的性质,相似三角形的性质与判定是解题的关键.
5、
(1)①见解析;②,理由见解析
(2)3或
【分析】
(1)①由旋转的性质得,,,根据相似的判定定理即可得证;
②由旋转和相似三角形的性质得,由得,故,代换即可得出结果;
(2)设,作于H,射线BE交线段AC于点F,则,由旋转可证,由相似三角形的性质得,即,由此可证,故,求得,分情况讨论:①当线段BE交AC于F时、当射线BE交AC于F时,根据相似比求出x的值,再根据勾股定理即可求出CF的长.
(1)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
①∵将绕点C旋转得到,
∴,,,
∴,,
∴;
②,理由如下:
∵将绕点C旋转得到,
∴,
∵,,,
∴,
∵,
∴,
∴,
∴;
(2)
设,作于H,射线BE交线段AC于点F,则,
∵将绕点C旋转得到,
∴,,,
∴,,
∴,
∴,,即,
∵,
∴,
∴,
∵,,
∴
①当线段BE交AC于F时,
解得,(舍),
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
②当射线BE交AC于F时,
解得(舍),,
∴,
综上,CF的长为3或.
【点睛】
本题考查相似三角形的判定与性质以及旋转的性质,掌握相似三角形的判定定理以及性质是解题的关键.
备考练习广西来宾市中考数学模拟真题测评 A卷(含答案及详解): 这是一份备考练习广西来宾市中考数学模拟真题测评 A卷(含答案及详解),共30页。
备考练习广西来宾市中考数学历年真题汇总 卷(Ⅲ)(含答案详解): 这是一份备考练习广西来宾市中考数学历年真题汇总 卷(Ⅲ)(含答案详解),共28页。试卷主要包含了如图,,代数式的意义是,下列图像中表示是的函数的有几个等内容,欢迎下载使用。
【真题汇总卷】湖南省汨罗市中考数学三年高频真题汇总卷(含详解): 这是一份【真题汇总卷】湖南省汨罗市中考数学三年高频真题汇总卷(含详解),共37页。试卷主要包含了下列等式变形中,不正确的是,单项式的次数是,如图,有三块菜地△ACD,下列图形是全等图形的是等内容,欢迎下载使用。