年终活动
搜索
    上传资料 赚现金

    备考练习湖南省长沙市中考数学二模试题(含答案解析)

    备考练习湖南省长沙市中考数学二模试题(含答案解析)第1页
    备考练习湖南省长沙市中考数学二模试题(含答案解析)第2页
    备考练习湖南省长沙市中考数学二模试题(含答案解析)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备考练习湖南省长沙市中考数学二模试题(含答案解析)

    展开

    这是一份备考练习湖南省长沙市中考数学二模试题(含答案解析),共27页。试卷主要包含了下列语句中,不正确的是,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,O是直线AB上一点,则图中互为补角的角共有( )
    A.1对B.2对C.3对D.4对
    2、如图,在中,,D是BC的中点,垂足为D,交AB于点E,连接CE.若,,则BE的长为( )
    A.3B.C.4D.
    3、一元二次方程的根为( ).
    A.B.
    C.,D.,
    4、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
    A.B.C.D.
    5、下列语句中,不正确的是( )
    A.0是单项式B.多项式的次数是4
    C.的系数是D.的系数和次数都是1
    6、下列图形中,能用,,三种方法表示同一个角的是( )
    A.B.
    C.D.
    7、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.7B.6C.5D.4
    8、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )
    A.16B.19C.24D.36
    9、若把边长为的等边三角形按相似比进行缩小,得到的等边三角形的边长为( )
    A.B.C.D.
    10、已知单项式5xayb+2的次数是3次,则a+b的值是( )
    A.1B.3C.4D.0
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在日常生活和生产中有很多现象可以用数学知识进行解释.如图,要把一根挂衣帽的挂钩架水平固定在墙上,至少需要钉______个钉子.用你所学数学知识说明其中的道理______.
    2、与是同类项.则常数n的值为________.
    3、如图,在中,,,,蚂蚁甲从点A出发,以1.5cm/s的速度沿着三角形的边按的方向行走,甲出发1s后蚂蚁乙从点A出发,以2cm/s的速度沿着三角形的边按的方向行走,那么甲出发________s后,甲乙第一次相距2cm.
    4、如图, 已知在 Rt 中, , 将 绕点 逆时针旋转 后得 , 点 落在点 处, 点 落在点 处, 联结 , 作 的平分线 , 交线段 于点 , 交线 段 于点 , 那么 的值为____________.
    5、如图,在中,,,,以点A为圆心,的长为半径画弧,以点B为圆心,的长为半径画弧,两弧分别交于点D、F,则图中阴影部分的面积是_________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,抛物线与x轴相交于点A,与y轴交于点B,C为线段OA上的一个动点,过点C作x轴的垂线,交直线AB于点D,交该抛物线于点E.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)求直线AB的表达式,直接写出顶点M的坐标;
    (2)当以B,E,D为顶点的三角形与相似时,求点C的坐标;
    (3)当时,求与的面积之比.
    2、第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:
    (1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;
    (2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;
    (3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?
    3、解方程:
    (1);
    (2)
    4、某演出票价为110元/人,若购买团体票有如下优惠:
    例如:200人作为一个团体购票,则需要支付票款元.甲、乙两个班全体学生准备去观看该演出,如果两个班作为一个团体去购票,则应付票款10065元.请列方程解决下列问题:
    (1)已知两个班总人数超过100人,求两个班总人数;
    (2)在(1)条件下,若甲班人数多于50人.乙班人数不足50人,但至少25人,如果两个班单独购票,一共应付票款11242元.求甲、乙两班分别有多少人?
    5、(1)探究:如图1,ABCDEF,试说明.
    (2)应用:如图2,ABCD,点在、之间,与交于点,与交于点.若,,则的大小是多少?
    (3)拓展:如图3,直线在直线、之间,且ABCDEF,点、分别在直线、上,点是直线上的一个动点,且不在直线上,连接、.若,则 度(请直接写出答案).
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    -参考答案-
    一、单选题
    1、B
    【分析】
    根据补角定义解答.
    【详解】
    解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
    故选:B.
    【点睛】
    此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
    2、D
    【分析】
    勾股定理求出CE长,再根据垂直平分线的性质得出BE=CE即可.
    【详解】
    解:∵,,,
    ∴,
    ∵,D是BC的中点,垂足为D,
    ∴BE=CE,
    故选:D.
    【点睛】
    本题考查了勾股定理,垂直平分线的性质,解题关键是熟练运用勾股定理求出CE长.
    3、A
    【分析】
    根据方程特点,利用直接开平方法,先把方程两边开方,即可求出方程的解.
    【详解】
    解:,
    两边直接开平方,得,
    则.
    故选:A.
    【点睛】
    此题主要考查了直接开平方法解一元二次方程,解题的关键是掌握直接开平方法的基本步骤及方法.
    4、D
    【分析】
    根据题意得出∠1=15°,再求∠1补角即可.
    【详解】
    由图形可得
    ∴∠1补角的度数为
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故选:D.
    【点睛】
    本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
    5、D
    【分析】
    分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.
    【详解】
    解:A、0是单项式,正确,不符合题意;
    B、多项式的次数是4,正确,不符合题意;
    C、的系数是,正确,不符合题意;
    D、的系数是-1,次数是1,错误,符合题意,
    故选:D.
    【点睛】
    本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.
    6、A
    【分析】
    根据角的表示的性质,对各个选项逐个分析,即可得到答案.
    【详解】
    A选项中,可用,,三种方法表示同一个角;
    B选项中,能用表示,不能用表示;
    C选项中,点A、O、B在一条直线上,
    ∴能用表示,不能用表示;
    D选项中,能用表示,不能用表示;
    故选:A.
    【点睛】
    本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
    7、A
    【分析】
    由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.
    【详解】
    由折叠的性质得,,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴,
    在与中,

    ∴,
    ∴,,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    设,则,
    ∴,
    解得:,
    ∴,,
    ∴.
    故选:A.
    【点睛】
    本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
    8、C
    【分析】
    分别求出各视图的面积,故可求出表面积.
    【详解】
    由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5
    故表面积为2×(4+3+5)=24
    故选C.
    【点睛】
    此题主要考查三视图的求解与表面积。解题的关键是熟知三视图的性质特点.
    9、A
    【分析】
    直接根据位似图形的性质求解即可
    【详解】
    解:∵把边长为的等边三角形按相似比进行缩小,
    ∴得到的新等边三角形的边长为:
    故选:A
    【点睛】
    本题主要考查了根据位似图形的性质求边长,熟练掌握位似图形的性质是解答本题的关键.
    10、A
    【分析】
    根据单项式的次数的概念求解.
    【详解】
    解:由题意得:a+b+2=3,
    ∴a+b=1.
    故选:A.
    【点睛】
    本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.
    二、填空题
    1、 2 两点确定一条直线
    【解析】
    【分析】
    根据两点确定一条直线解答.
    【详解】
    解:至少需要钉2个钉子,所学的数学知识为:两点确定一条直线,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故答案为:2,两点确定一条直线.
    【点睛】
    此题考查了线段的性质:两点确定一条直线,熟记性质是解题的关键.
    2、
    【解析】
    【分析】
    所含字母相同,相同字母的指数也相同的单项式是同类项,根据同类项的概念可得答案.
    【详解】
    解: 与是同类项,

    故答案为:
    【点睛】
    本题考查的是同类项的概念,掌握“利用同类项的概念求解字母指数的值”是解本题的关键.
    3、4
    【解析】
    【分析】
    根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.
    【详解】
    解:根据题意,
    ∵,,,
    ∴周长为:(cm),
    ∵甲乙第一次相距2cm,则甲乙没有相遇,
    设甲行走的时间为t,则乙行走的时间为,
    ∴,
    解得:;
    ∴甲出发4秒后,甲乙第一次相距2cm.
    故答案为:4.
    【点睛】
    本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程.
    4、
    【解析】
    【分析】
    根据题意以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,由可设,,,由旋转可得,,,则,,写出点坐标,由角平分线的性质得,即可得出,即可得,故可推出,求出点P坐标,由得,推出,故得,由相似三角形的性质即可得解.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    如图,以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,
    ∵,
    ∴设,,,
    由旋转可得:,,,
    ∴,,
    ∴,,,
    ∵AN是平分线,
    ∴,
    ∴,即可得,
    ∴,
    设直线BE的解析式为,
    把,代入得:,
    解得:,
    ∴,
    当时,,
    解得:,
    ∴,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴.
    故答案为:.
    【点睛】
    本题考查旋转的性质、正切值、角平分线的性质以、用待定系数法求一次函数及相似三角形的判定与性质,根据题意建立出适当的坐标找线段长度是解题的关键.
    5、
    【解析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    根据直角三角形30度角的性质及勾股定理求出AC、BC,∠A=60°,利用扇形面积公式求出阴影面积.
    【详解】
    解:在中,,,,
    ∴AC=1,,∠A=60°,
    ∴图中阴影部分的面积=
    =
    =,
    故答案为:.
    【点睛】
    此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键.
    三、解答题
    1、
    (1),,
    (2),或,
    (3)
    【分析】
    (1)求出、点的坐标,用待定系数法求直线的解析式即可;
    (2)由题意可知是直角三角形,设,分两种情况讨论①当,时,,此时,由此可求;②当时,过点作轴交于点,可证明,则,可求,再由点在抛物线上,则可求,进而求点坐标;
    (3)作的垂直平分线交轴于点,连接,过点作于点,则有,在中,,求出,,则,设,则,,则有,求出,即可求.
    (1)
    解:令,则,
    或,

    令,则,

    设直线的解析式为,




    ,;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)
    解:,,
    是直角三角形,
    设,
    ①如图1,
    当,时,,


    (舍或,
    ,;
    ②如图2,
    当时,
    过点作轴交于点,
    ,,


    ,即,



    (舍或,
    ,;
    综上所述:点的坐标为,或,;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (3)
    解:如图3,作的垂直平分线交轴于点,连接,过点作于点,




    在中,,





    设,则,,
    ,,,,,





    【点睛】
    本题是二次函数的综合题,求一次函数的解析式,解题的关键熟练掌握二次函数的图象及性质,三角形相似的性质与判定,分类讨论,数形结合也是解题的关键.
    2、
    (1)12%.补图见解析
    (2)270
    (3)12.5%
    【分析】
    (1)用冰壶的人所占百分比减去4个百分点即可求出百分比,按照百分比补全统计图即可;
    (2)用120人除以体验过冰壶运动的百分比求出总人数,再乘以滑雪的百分比即可;
    (3)求出体验过滑雪的人比体验过滑冰的人多多少人,再求出百分比即可.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)
    解:都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的百分比为:16%-4%=12%,不全统计图如图:
    故答案为:12%.
    (2)
    解:调查的总人数为:120÷24%=500(人),
    参加过滑雪的人数为:500×54%=270(人),
    故答案为:270
    (3)
    解:体验过滑冰的人数为:500×48%=240(人),
    (270-240)÷240=12.5%,
    体验过滑雪的人比体验过滑冰的人多12.5%.
    【点睛】
    本题考查了条形统计图,解题关键是准确从条形统计图中获取信息,正确进行计算求解.
    3、
    (1)x= ;
    (2)x=
    【分析】
    (1)根据解一元一次方程的方法求解即可;
    (2)根据解一元一次方程的方法求解即可.
    (1)
    解:去括号,得:6-9x=x+1,
    移项、合并同类项,得:-10x=-5,
    化系数为1,得:x= ;
    (2)
    解:去分母,得:2(2x+1)=6+(1-3x),
    去括号,得:4x+2=6+1-3x,
    移项、合并同类项,得:7x=5,
    化系数为1,得:x= ;
    【点睛】
    本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
    4、
    (1)人
    (2)甲班有人,乙班有人.
    【分析】
    (1)设两个班总人数为人,再根据各段费用之和为10065元,列方程,再解方程即可;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)设乙班有人,则甲班有人,当时,则 再列方程 再解方程可得答案.
    (1)
    解:设两个班总人数为人,则
    整理得:
    解得:
    答:两个班总人数为人.
    (2)
    解:设乙班有人,则甲班有人,
    当时,则

    整理得:
    解得:

    答:甲班有人,乙班有人.
    【点睛】
    本题考查的是一元一次方程的应用,最优化选择问题,分段计费问题,理解题意,确定相等关系列方程是解本题的关键.
    5、(1)见解析;(2)60°;(3)70或290
    【分析】
    (1)由可得,,,则;
    (2)利用(1)中的结论可知,,则可得的度数为,由对顶角相等可得;
    (3)结合(1)中的结论可得,注意需要讨论是钝角或是锐角时两种情况.
    【详解】
    解:(1)如图1,,
    ,,


    (2)由(1)中探究可知,,
    ,且,


    (3)如图,当为钝角时,
    由(1)中结论可知,,

    当为锐角时,如图,
    由(1)中结论可知,,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    即,
    综上,或.
    故答案为:70或290.
    【点睛】
    本题主要考查平行线的性质与判定,难度适中,观察图形,推出角之间的和差关系是解题关键.
    购票人数
    不超过50人的部分
    超过50人,但不超过100人的部分
    超过100人的部分
    优惠方案
    无优惠
    每线票价优惠20%
    每线票价优惠50%

    相关试卷

    2023年湖南省长沙市雨花区南雅中学中考数学二模试卷(含解析):

    这是一份2023年湖南省长沙市雨花区南雅中学中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖南省长沙市长沙县中考数学二模试卷(含解析):

    这是一份2023年湖南省长沙市长沙县中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖南省长沙市长沙县中考数学二模试卷(含解析):

    这是一份2023年湖南省长沙市长沙县中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map