【真题汇总卷】贵州省中考数学历年高频真题专项攻克 B卷(含答案详解)
展开
这是一份【真题汇总卷】贵州省中考数学历年高频真题专项攻克 B卷(含答案详解),共25页。试卷主要包含了一元二次方程的根为,如图,下列条件中不能判定的是,已知,则的补角等于等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列式子中,与是同类项的是( )
A.abB.C.D.
2、如图是由一些完全相同的小立方块搭成的几何体从左面、上面看到的形状图.搭成这个几何体所用的小立方块的个数至少是( )
A.3个B.4个C.5个D.6个
3、已知反比例函数经过平移后可以得到函数,关于新函数,下列结论正确的是( )
A.当时,y随x的增大而增大B.该函数的图象与y轴有交点
C.该函数图象与x轴的交点为(1,0)D.当时,y的取值范围是
4、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为( ).
A.B.C.D.
5、一元二次方程的根为( )
A.B.C.D.
6、如图,下列条件中不能判定的是( )
A.B.C.D.
7、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A.B.C.D.
8、已知,则的补角等于( )
A.B.C.D.
9、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.75°B.70°C.65°D.55°
10、若和是同类项,且它们的和为0,则mn的值是( )
A.-4B.-2C.2D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一张长方形纸片沿直线折成如图所示图案,已知,则__.
2、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.
3、如图, 已知在 Rt 中, , 将 绕点 逆时针旋转 后得 , 点 落在点 处, 点 落在点 处, 联结 , 作 的平分线 , 交线段 于点 , 交线 段 于点 , 那么 的值为____________.
4、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.
5、如图是两个全等的三角形,图中字母表示三角形的边长,则∠的度数为________º.
三、解答题(5小题,每小题10分,共计50分)
1、计算:
(1)
(2)
2、如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C,己知点,此抛物线对称轴为.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)求抛物线的解析式;
(2)将抛物线向下平移t个单位长度,使平移后所得抛物线的顶点落在内(包括的边界),求t的取值范围;
(3)设点P是抛物线上任一点,点Q在直线上,能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标:若不能,请说明理由.
3、某校准备从八年级1班、2班的团员中选取两名同学作为运动会的志愿者,已知1班有4名团员(其中男生2人,女生2人).2班有3名团员(其中男生1人,女生2人).
(1)如果从这两个班的全体团员中随机选取一名同学作为志愿者的组长,则这名同学是男生的概率为______;
(2)如果分别从1班、2班的团员中随机各选取一人,请用画树状图或列表的方法求这两名同学恰好是一名男生、一名女生的概率.
4、已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为 E,ED的延长线与AC 的延长线交于点F,
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为4,∠F =30°,求DE的长.
5、如图,在的正方形格纸中,是以格点为顶点的三角形,也称为格点三角形,请你在该正方形格纸中画出与成轴对称的所有的格点三角形(用阴影表示).
-参考答案-
一、单选题
1、D
【分析】
根据同类项是字母相同,相同字母的指数也相同的两个单项式进行解答即可.
【详解】
解:A、ab与ab2不是同类项,不符合题意;
B、a2b与ab2不是同类项,不符合题意;
C、ab2c与ab2不是同类项,不符合题意;
D、-2ab2与ab2是同类项,符合题意;
故选:D.
【点睛】
本题考查同类项,理解同类项的概念是解答的关键.
2、C
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,从而得到上层至少1块,底层2行至少有3+1=4块,即可求解.
【详解】
解:根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,
所以上层至少1块,底层2行至少有3+1=4块,
所以搭成这个几何体所用的小立方块的个数至少是1+4=5块.
故选:C
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从左面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
3、C
【分析】
函数的图象是由函数的图象向下平移1个单位长度后得到的,根据两个函数的图像,可排除A,B,C选项,将y=0代入函数可得到函数与x轴交点坐标为(1,0),故C选项正确.
【详解】
解:函数与函数的图象如下图所示:
函数的图象是由函数的图象向下平移1个单位长度后得到的,
A、由图象可知函数,当时,y随x的增大而减小,选项说法错误,与题意不符;
B、函数的图象是由函数的图象向下平移一个单位后得到的,所以函数与y轴无交点,选项说法错误,与题意不符;
C、将y=0代入函数中得,,解得,故函数与x轴交点坐标为(1,0),选项说法正确,与题意相符;
D、当时, ,有图像可知当时,y的取值范围是,故选项说法错误,与题意不符;
故选:C.
【点睛】
本题考查反比例函数的图象,以及函数图象的平移,函数与数轴的交点求法,能够画出图象,并掌握数形结合的方法是解决本题的关键.
4、C
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:∵袋子中共有6个小球,其中白球有3个,
∴摸出一个球是白球的概率是.
故选:C.
【点睛】
本题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
5、C
【分析】
先移项,把方程化为 再利用直接开平方的方法解方程即可.
【详解】
解:,
即
故选C
【点睛】
本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.
6、A
【分析】
根据平行线的判定逐个判断即可.
【详解】
解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
∴∠3=∠5,
因为”同旁内角互补,两直线平行“,
所以本选项不能判断AB∥CD;
B、∵∠3=∠4,
∴AB∥CD,
故本选项能判定AB∥CD;
C、∵,
∴AB∥CD,
故本选项能判定AB∥CD;
D、∵∠1=∠5,
∴AB∥CD,
故本选项能判定AB∥CD;
故选:A.
【点睛】
本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
7、B
【分析】
根据三角形的中线的定义判断即可.
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
故选:B.
【点睛】
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
8、C
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
9、B
【分析】
直接根据圆周角定理求解.
【详解】
解:,
.
故选:B.
【点睛】
本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
10、B
【分析】
根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
【详解】
解:∵和是同类项,且它们的和为0,
∴2+m=3,n-1=-3,
解得m=1,n=-2,
∴mn=-2,
故选:B.
【点睛】
此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
二、填空题
1、##65度
【解析】
【分析】
根据折叠的性质可得出,代入的度数即可得出答案.
【详解】
解:由折叠可得出,
,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:.
【点睛】
本题考查了翻折变换的性质,熟练掌握翻折变换的性质是解题的关键.
2、4m+12##12+4m
【解析】
【分析】
根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.
【详解】
解:由面积的和差,得
长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).
由长方形的宽为3,可得长方形的长是(2m+3),
长方形的周长是2[(2m+3)+3]=4m+12.
故答案为:4m+12.
【点睛】
本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.
3、
【解析】
【分析】
根据题意以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,由可设,,,由旋转可得,,,则,,写出点坐标,由角平分线的性质得,即可得出,即可得,故可推出,求出点P坐标,由得,推出,故得,由相似三角形的性质即可得解.
【详解】
如图,以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,
∵,
∴设,,,
由旋转可得:,,,
∴,,
∴,,,
∵AN是平分线,
∴,
∴,即可得,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
设直线BE的解析式为,
把,代入得:,
解得:,
∴,
当时,,
解得:,
∴,
∴,
∵,,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查旋转的性质、正切值、角平分线的性质以、用待定系数法求一次函数及相似三角形的判定与性质,根据题意建立出适当的坐标找线段长度是解题的关键.
4、49
【解析】
【分析】
延长FE交AB于点M,则,,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.
【详解】
如图,延长FE交AB于点M,则,,
∵四边形ABCD是正方形,
∴,
∴是等腰直角三角形,
∴,
在中,,
∴,
∴.
故答案为:49.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.
5、70
【解析】
【分析】
如图(见解析),先根据三角形的内角和定理可得,再根据全等三角形的性质即可得.
【详解】
解:如图,由三角形的内角和定理得:,
图中的两个三角形是全等三角形,在它们中,边长为和的两边的夹角分别为和,
,
故答案为:70.
【点睛】
本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.
三、解答题
1、
(1)
(2)
【解析】
(1)
解:
(2)
解:
【点睛】
本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序”是解本题的关键,有理数的混合运算的运算顺序为:先乘方,再乘除,最后算加减,有括号先算括号内的运算.
2、
(1)即抛物线的解析式为:;
(2)若将抛物线向下平移t个单位长度,使平移后所得的抛物线的顶点落在内部(包含边界),则;
(3)能成为以点P为直角顶点的等腰直角三角形,点P的坐标为或(3,4)或或(,).
【分析】
(1)将点B及对称轴代入,解方程组即可确定抛物线解析式;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)先求直线BC的解析式,再求出抛物线顶点坐标,求出BC上与顶点横坐标相同的点的坐标,即可求出平移的范围;
(3)分两种情况进行讨论:①当P在x轴上方时;②当P点在x轴下方时;过点P作于G,轴于H,根据全等三角形的判定定理和性质得出,设点,则可以用m表示,求出m即可确定点P的坐标.
(1)
解:将点B及对称轴代入可得:
,
解得:,
即抛物线的解析式为:;
(2)
解:在中,当时,,即,
由,,设直线BC的解析式为,代入可得:
,
解得:,
直线BC的解析式为:,
中,当时,,
∴顶点坐标为:,
当时,,
∴,
∴若将抛物线向下平移t个单位长度,使平移后所得的抛物线的顶点落在内部(包含边界),则;
(3)
(3)令直线为直线l,
①当P在x轴上方时,
过点P作于G,轴于H, 为等腰直角三角形,
∴ , ,
∴,
在与中,
,
∴
∴,
设点,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
则,,
∴,
解得:或,
即或(3,4);
②当P点在x轴下方时,如图所示:过点P作于G,轴于H, 为等腰直角三角形,
∴ , ,
∴,
在与中,
,
∴
∴,
设点,
则,,
∴,
解得:或,
当时,;
当时,;
即,或(,);
综上所述,能成为以点P为直角顶点的等腰直角三角形,点P的坐标为:或(3,4)或或(,).
【点睛】
本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,二次函数动点问题中等腰直角三角形的存在性问题;此题通过作两条互相垂直的辅助线,把等腰直角三角形的问题转化为全等三角形的问题,继而转化为线段相等的问题,是解题的关键.
3、
(1)
(2)两名同学恰好是一名男生、一名女生的概率为:
【分析】
(1)两个班一共有7名学生,其中男生有3人,随机选一名学生选出为男生的概率为:男生人数除以总人数;
(2)先根据题意画出树状图,第一层列出从1班选出的所有可能情况,第二层列出从二班选出的所有可能情况,根据树状图可知一共有12种等可能事件,其中选出的恰好是一名男生和一名女生的情况有6种,所以两名同学恰好是一名男生、一名女生的概率为.
(1)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:恰好选出的同学是男生的概,
故答案为:.
(2)
画树状图如图:
,
共有12个等可能事件,其中恰好两名同学恰好是一名男生、一名女生的概率为:,
故答案为:.
【点睛】
本题考查简单的概率计算,以及列表法或列树状图法求概率,能够将根据题意列表,或列树状图,并根据列表或树状图求出概率.
4、
(1)见解析
(2)
【分析】
(1)连接AD、OD,根据等腰三角形的性质和圆周角定理可证得∠EAD=∠ODA,根据平行线在判定与性质可证得OD⊥DE,然后根据切线的判定即可证得结论;
(2)根据含30°角的直角三角形的性质求得OF、DF,再根据平行线分线段成比例求解即可.
(1)
证明:连接AD、OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AC是⊙O的直径,
∴∠ADC=90°即AD⊥BC,又AB=AC,
∴∠BAD=∠OAD,
∴∠EAD=∠ODA,
∴OD∥AB,
∵DE⊥AB,
∴OD⊥DE,又OD是半径,
∴DE是⊙O的切线;
(2)
解:在Rt△ODF中,OD=4,∠F=30°,
∴OF=2OD=8,DF= OD= ,
∵OD∥AB,
∴即,
∴.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查等腰三角形的性质、圆周角定理、平行线的判定与性质、切线的判定、含30°角的直角三角形性质、平行线分线段成比例,综合性强,难度适中,熟练掌握相关知识的联系与运用是解答的关键.
5、见详解
【分析】
先找对称轴,再得到个点的对应点,即可求解.
【详解】
解:根据题意画出图形,如下图所示:
【点睛】
本题主要考查了画轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
相关试卷
这是一份【真题汇总卷】湖南省怀化市中考数学历年高频真题专项攻克 B卷(含答案及详解),共27页。试卷主要包含了下列图标中,轴对称图形的是,如图,,下列图形是全等图形的是,下列方程中,解为的方程是,单项式的次数是等内容,欢迎下载使用。
这是一份【真题汇总卷】湖南省衡阳市中考数学历年高频真题专项攻克 B卷(含答案详解),共28页。试卷主要包含了下列方程变形不正确的是等内容,欢迎下载使用。
这是一份【真题汇总卷】贵州省中考数学历年高频真题专项攻克 B卷(含详解),共30页。试卷主要包含了代数式的意义是,下列现象等内容,欢迎下载使用。