年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    模拟真题湖南省怀化市中考数学三年高频真题汇总 卷(Ⅰ)(含答案及解析)

    模拟真题湖南省怀化市中考数学三年高频真题汇总 卷(Ⅰ)(含答案及解析)第1页
    模拟真题湖南省怀化市中考数学三年高频真题汇总 卷(Ⅰ)(含答案及解析)第2页
    模拟真题湖南省怀化市中考数学三年高频真题汇总 卷(Ⅰ)(含答案及解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模拟真题湖南省怀化市中考数学三年高频真题汇总 卷(Ⅰ)(含答案及解析)

    展开

    这是一份模拟真题湖南省怀化市中考数学三年高频真题汇总 卷(Ⅰ)(含答案及解析),共25页。试卷主要包含了如图,点B,有理数 m等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、一元二次方程的根为( )
    A.B.C.D.
    2、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )
    A.B.
    C.D.
    3、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
    A.7B.6C.5D.4
    4、已知反比例函数经过平移后可以得到函数,关于新函数,下列结论正确的是( )
    A.当时,y随x的增大而增大B.该函数的图象与y轴有交点
    C.该函数图象与x轴的交点为(1,0)D.当时,y的取值范围是
    5、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
    A.B.C.D.
    6、如图,在中,D是延长线上一点,,,则的度数为( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.B.C.D.
    7、如图,点B、G、C在直线FE上,点D在线段AC上,下列是△ADB的外角的是( )
    A.∠FBAB.∠DBCC.∠CDBD.∠BDG
    8、有理数 m、n 在数轴上的位置如图,则(m+n)(m+2n)(m﹣n)的结果的为( )
    A.大于 0B.小于 0C.等于 0D.不确定
    9、在如图所示的几何体中,从不同方向看得到的平面图形中有长方形的是( )
    A.①B.②C.①②D.①②③
    10、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、、所表示的有理数如图所示,则________.
    2、当a=﹣1时,代数式2a2﹣a+1的值是 ___.
    3、某树主干长出x根枝干,每个枝干又长出x根小分支,若主干、枝干和小分支总数共133根,则主干长出枝干的根数x为______.
    4、如图,小明用一张等腰直角三角形纸片做折纸实验,其中∠C=90°,AC=BC=10,AB=10,点C关于折痕AD的对应点E恰好落在AB边上,小明在折痕AD上任取一点P,则△PEB周长的最小值是___________.
    5、如图,在平面直角坐标系xOy中,P为函数图象上一点,过点P分别作x轴、y轴的垂线,垂足分别为M,N.若矩形PMON的面积为3,则m的值为______.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    三、解答题(5小题,每小题10分,共计50分)
    1、已知:在四边形中,于E,且.
    (1)如图1,求的度数;
    (2)如图2,平分交于F,点G在上,连接,且.求证:;
    (3)如图3,在(2)的条件下,,过点F作,且,若,求线段的长.
    2、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.
    (1)随机摸取一个小球的标号是奇数,该事件的概率为_______;
    (2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出的小球标号相同的概率.
    3、如图,在中,,.
    (1)尺规作图:
    ①作边的垂直平分线交于点,交于点;
    ②连接,作的平分线交于点;(要求:保留作图痕迹,不写作法)
    (2)在(1)所作的图中;求的度数.
    解:∵垂直平分线段,
    ∴,(_________)(填推理依据)
    ∴,(__________)(填推理依据)
    ∵,∴,
    ∵,
    ∴__________,
    ∴__________,
    ∵平分,
    ∴__________.
    4、解方程:
    (1);
    (2)
    5、现有面值为5元和2元的人民币共32张,币值共计100元,问:这两种人民币各有多少张?
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    -参考答案-
    一、单选题
    1、C
    【分析】
    先移项,把方程化为 再利用直接开平方的方法解方程即可.
    【详解】
    解:,


    故选C
    【点睛】
    本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.
    2、A
    【分析】
    整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.
    【详解】
    ∵大正方形边长为:,面积为:;
    1个小正方形的面积加上4个矩形的面积和为:;
    ∴.
    故选:A.
    【点睛】
    此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.
    3、A
    【分析】
    由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.
    【详解】
    由折叠的性质得,,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴,
    在与中,

    ∴,
    ∴,,
    设,则,
    ∴,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解得:,
    ∴,,
    ∴.
    故选:A.
    【点睛】
    本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
    4、C
    【分析】
    函数的图象是由函数的图象向下平移1个单位长度后得到的,根据两个函数的图像,可排除A,B,C选项,将y=0代入函数可得到函数与x轴交点坐标为(1,0),故C选项正确.
    【详解】
    解:函数与函数的图象如下图所示:
    函数的图象是由函数的图象向下平移1个单位长度后得到的,
    A、由图象可知函数,当时,y随x的增大而减小,选项说法错误,与题意不符;
    B、函数的图象是由函数的图象向下平移一个单位后得到的,所以函数与y轴无交点,选项说法错误,与题意不符;
    C、将y=0代入函数中得,,解得,故函数与x轴交点坐标为(1,0),选项说法正确,与题意相符;
    D、当时, ,有图像可知当时,y的取值范围是,故选项说法错误,与题意不符;
    故选:C.
    【点睛】
    本题考查反比例函数的图象,以及函数图象的平移,函数与数轴的交点求法,能够画出图象,并掌握数形结合的方法是解决本题的关键.
    5、A
    【分析】
    作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
    【详解】
    解:如图,作点A关于x轴的对称点,则PA=,
    ∴≤(当P、、B共线时取等号),
    连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
    设直线的函数表达式为y=kx+b,
    将(1,-1)、B(2,-3)代入,得:
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ,解得:,
    ∴y=-2x+1,
    当y=0时,由0=-2x+1得:x=,
    ∴点P坐标为(,0),
    故选:A
    【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
    6、B
    【分析】
    根据三角形外角的性质可直接进行求解.
    【详解】
    解:∵,,
    ∴;
    故选B.
    【点睛】
    本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
    7、C
    【分析】
    根据三角形的外角的概念解答即可.
    【详解】
    解:A.∠FBA是△ABC的外角,故不符合题意;
    B. ∠DBC不是任何三角形的外角,故不符合题意;
    C.∠CDB是∠ADB的外角,符合题意;
    D. ∠BDG不是任何三角形的外角,故不符合题意;
    故选:C.
    【点睛】
    本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
    8、A
    【分析】
    从数轴上看出,判断出,进而判断的正负.
    【详解】
    解:由题意知:


    故选A.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查了有理数加减的代数式正负的判断.解题的关键在于正确判断各代数式的正负.
    9、C
    【分析】
    分别找出每个图形从三个方向看所得到的图形即可得到答案.
    【详解】
    ①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,符合要求;
    ②圆柱从左面和正面看都是长方形,从上边看是圆,符合要求;
    ③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,不符合要求;故选:C.
    【点睛】
    本题考查了从不同方向看几何体,掌握定义是关键.注意正方形是特殊的长方形.
    10、B
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,
    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    根据数轴确定,得出,然后化去绝对值符号,去括号合并同类项即可.
    【详解】
    解:根据数轴得,
    ∴,
    ∴.
    故答案为:.
    【点睛】
    本题考查数轴上点表示数,化简绝对值,整式加减运算,掌握数轴上点表示数,化简绝对值,整式加减运算,关键是利用数轴得出.
    2、4
    【解析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    把a=-1直接代入2a2-a+1计算即可.
    【详解】
    解:把a=-1代入2a2-a+1得
    2a2-a+1
    =2×(-1)2-(-1)+1
    =2+1+1
    =4;
    故答案为:4.
    【点睛】
    本题考查了代数式的求值,掌握用数值代替代数式里的字母进行计算,正确计算结果是解题关键.
    3、
    【解析】
    【分析】
    某树主干长出x根枝干,每个枝干又长出x根小分支,则小分支有根,可得主干、枝干和小分支总数为根,再列方程解方程,从而可得答案.
    【详解】
    解:某树主干长出x根枝干,每个枝干又长出x根小分支,则



    解得:
    经检验:不符合题意;取
    答:主干长出枝干的根数x为
    故答案为:
    【点睛】
    本题考查的是一元二次方程的应用,理解题意,用含的代数式表示主干、枝干和小分支总数是解本题的关键.
    4、
    【解析】
    【分析】
    连接CE,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,即可此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.
    【详解】
    解:连接CE,
    ∵沿AD折叠C和E重合,
    ∴∠ACD=∠AED=90°,AC=AE=10,∠CAD=∠EAD,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴BE=10-10,AD垂直平分CE,即C和E关于AD对称,CD=DE,
    ∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,
    ∴△PEB的周长的最小值是BC+BE=10+10-10=10.
    故答案为:10.
    【点睛】
    本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,关键是求出P点的位置.
    5、3
    【解析】
    【分析】
    根据反比例函数的解析式是,设点,根据已知得出,即,求出即可.
    【详解】
    解:设反比例函数的解析式是,
    设点是反比例函数图象上一点,
    矩形的面积为3,

    即,
    故答案为:3.
    【点睛】
    本题考查了矩形的面积和反比例函数的有关内容的应用,解题的关键是主要考查学生的理解能力和运用知识点解题的能力.
    三、解答题
    1、
    (1)120°;
    (2)见解析;
    (3)3.
    【分析】
    (1)取AD的中点F,连接EF,证明△AEF是等边三角形,进而求得∠B;
    (2)作FM⊥BC于M,FN⊥AB于点N,先证明Rt△BFM≌Rt△BFN,再证明Rt△FMG≌Rt△FNA;
    (3)连接AG,DF,DG,作FM⊥BC于M,先证明AF=GF=DF,从而得出∠AGH=∠AFD=30°,进而得出∠DGC=∠DFC=120°,从而得出点G、C、D、F共圆,进而得出CA平分∠BCD,接着可证Rt△FMG≌Rt△FHD,△MCF≌△HCF,进而求得GM=CG=DH=,从而得出BM的值,进而求得BF.
    (1)
    解:如图1,取AD的中点F,连接EF,
    ∵DE⊥AC,
    ∴∠AED=90°,
    ∴AD=2AF=2EF,
    ∵AD=2AE,
    ∴AE=EF=AF,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴∠CAD=60°,
    ∵∠B+∠CAD=180°,
    ∴∠B=120°;
    (2)
    证明:如图2,作FM⊥BC于M,FN⊥AB于点N,
    ∴∠BMF=∠BNF=90°,∠GMF=∠ANF=90°,
    ∵BF平分∠ABC,
    ∴FM=FN,
    在Rt△BFM和Rt△BFN中,

    ∴Rt△BFM≌Rt△BFN(HL),
    ∴BM=BN,
    在Rt△FMG和Rt△FNA中,

    ∴Rt△FMG≌Rt△FNA(HL),
    ∴MG=NA,
    ∴BN+NA=BM+MG,
    ∴AB=BG.
    (3)
    如图3,
    连接AG,DF,DG,作FM⊥BC于M,延长GF交AD于N,
    ∵AF=AD,∠DAE=60°,
    ∴△ADF是等边三角形,
    ∴∠AFD=60°,AF=DF,
    ∵GF=AF,∠DFC=180°-∠AFD=120°,
    ∴AF=GF=DF,
    ∴∠FGD=∠FDG,∠FAG=∠FGA,
    ∴∠AGD=∠AFN+∠DFN=∠AFD=×60°=30°,
    ∵∠ADC=120°,AD=DG,
    ∴∠DGA=∠DAG==30°,
    ∴∠DGC=180°-∠DGA-∠AGD=180°-30°-30°=120°,
    ∴∠DGC=∠DFC,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵∠1=∠2,
    ∴180°-∠DGC-∠1=180°-∠DFC-∠2,
    ∴∠GCF=∠FDG,∠DCF=∠FGD,
    ∴∠GCF=∠DCF,
    ∵FH⊥CD,
    ∴FM=FH,
    ∵∠FMG=∠FHD=90°,
    ∴Rt△FMG≌Rt△FHD(HL),
    ∴DH=MG,
    同理可得:△MCF≌△HCF(HL),
    ∴CM=CH=2CG,
    ∴GM=CG=DH,
    ∴3CG=CD=,
    ∴GM=CG=,
    ∴BM=BG-GM=AB-GM=5-=,
    在Rt△BFM中,∠BFM=90°-∠FBM=90°-60°=30°,
    ∴BF=2BM=3.
    【点睛】
    本题考查了等边三角形的判定和性质,全等三角形的判定和性质,角平分线的性质等知识,解决问题的关键是正确作出辅助线.
    2、
    (1)
    (2)(两次取出的小球标号相同)
    【分析】
    (1)直接由概率公式求解即可;
    (2)画树状图,共有9种等可能的结果,两次取出小球标号相同的结果有3种,再由概率公式求解即可.
    (1)
    ∵在1,2,3三个数中,其中奇数有1,3共2个数,
    ∴随机摸取一个小球的标号是奇数,该事件的概率为
    故答案为:;
    (2)
    画树状图如下:
    由树状图可知,随机摸取一个小球后放回,再随机摸取一个小球,共有9种等可能的结果,其中两次取出的小球标号相同的结果共有3种,
    ∴(两次取出的小球标号相同).
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    3、(1)①图见解析;②图见解析;(2)线段垂直平分线上的点到这条线段两个端点的距离相等,等边对等角,110,80,40.
    【分析】
    (1)①根据线段垂直平分线的尺规作图即可得;
    ②先连接,再根据角平分线的尺规作图即可得;
    (2)先根据线段垂直平分线的性质可得,再根据等腰三角形的性质可得,然后根据三角形的内角和定理可得,从而可得,最后根据角平分线的定义即可得.
    【详解】
    解:(1)①作边的垂直平分线交于点,交于点如图所示:
    ②连接,作的平分线交于点如图所示:
    (2)∵垂直平分线段,
    ∴,(线段垂直平分线上的点到这条线段两个端点的距离相等)
    ∴,(等边对等角)
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵平分,
    ∴.
    【点睛】
    本题考查了线段垂直平分线和角平分线的尺规作图、线段垂直平分线的性质、等腰三角形的性质等知识点,熟练掌握尺规作图和线段垂直平分线的性质是解题关键.
    4、
    (1)x= ;
    (2)x=
    【分析】
    (1)根据解一元一次方程的方法求解即可;
    (2)根据解一元一次方程的方法求解即可.
    (1)
    解:去括号,得:6-9x=x+1,
    移项、合并同类项,得:-10x=-5,
    化系数为1,得:x= ;
    (2)
    解:去分母,得:2(2x+1)=6+(1-3x),
    去括号,得:4x+2=6+1-3x,
    移项、合并同类项,得:7x=5,
    化系数为1,得:x= ;
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
    5、面值为5元得人民币由12张,面值为2元得人民币由20张.
    【分析】
    设面值为5元得人民币由张,面值为2元得人民币由张,然后由面值共100元,列出方程,解方程即可.
    【详解】
    解答:解:设面值为5元得人民币由张,面值为2元得人民币由张,
    根据题意得:,
    解得:(张,
    (张.
    答:面值为5元得人民币由12张,面值为2元得人民币由20张.
    【点睛】
    此题属于一元一次方程的应用题,关键是由题意列出方程.

    相关试卷

    模拟真题湖南省怀化市中考数学五年真题汇总 卷(Ⅲ)(含答案及解析):

    这是一份模拟真题湖南省怀化市中考数学五年真题汇总 卷(Ⅲ)(含答案及解析),共24页。试卷主要包含了下列式子中,与是同类项的是,代数式的意义是等内容,欢迎下载使用。

    模拟真题湖南省怀化市中考数学三年高频真题汇总卷(含答案详解):

    这是一份模拟真题湖南省怀化市中考数学三年高频真题汇总卷(含答案详解),共25页。试卷主要包含了下列函数中,随的增大而减小的是,下列等式变形中,不正确的是,下列计算中,正确的是等内容,欢迎下载使用。

    【真题汇总卷】湖南省长沙市中考数学三年高频真题汇总 卷(Ⅲ)(含答案解析):

    这是一份【真题汇总卷】湖南省长沙市中考数学三年高频真题汇总 卷(Ⅲ)(含答案解析),共23页。试卷主要包含了下列式子中,与是同类项的是,如图,E等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map