终身会员
搜索
    上传资料 赚现金

    模拟真题湖南省邵阳市中考数学第二次模拟试题(含答案详解)

    立即下载
    加入资料篮
    模拟真题湖南省邵阳市中考数学第二次模拟试题(含答案详解)第1页
    模拟真题湖南省邵阳市中考数学第二次模拟试题(含答案详解)第2页
    模拟真题湖南省邵阳市中考数学第二次模拟试题(含答案详解)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模拟真题湖南省邵阳市中考数学第二次模拟试题(含答案详解)

    展开

    这是一份模拟真题湖南省邵阳市中考数学第二次模拟试题(含答案详解),共27页。


    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
    A.75°B.70°C.65°D.55°
    2、2021年10月16日,中国神舟十三号载人飞船的长征二号F遥十三运载火箭在中国酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭成功分离,进入预定轨道,截至2021年11月2日,“神舟十三号”载人飞船已在轨飞行18天,距离地球约63800000千米,用科学记数法表示63800000为( )
    A.B.C.D.
    3、已知,则的补角等于( )
    A.B.C.D.
    4、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )
    A.两人前行过程中的速度为180米/分B.的值是15,的值是2700
    C.爸爸返回时的速度为90米/分D.运动18分钟或31分钟时,两人相距810米
    5、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
    A.19°B.20°C.24°D.25°
    6、如图,在中,D是延长线上一点,,,则的度数为( )
    A.B.C.D.
    7、下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A.B.C.D.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    8、如图,已知与都是以A为直角顶点的等腰直角三角形,绕顶点A旋转,连接.以下三个结论:①;②;③;其中结论正确的个数是( )
    A.1B.2C.3D.0
    9、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    A.米B.10米C.米D.12米
    10、整式的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:
    则关于x的方程的解为( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=_____.
    2、如图,射线,相交于点,则的内错角是__.
    3、如图,△ABC,△FGH中,D,E两点分别在AB,AC上,F点在DE上,G,H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,△FGH的面积是4,则△ADE的面积是______.
    4、如图,直角三角形AOB的直角边OA在数轴上,AB与数轴垂直,点O与数轴原点重合,点A表示的实数是2,BA=2,以点O为圆心,OB的长为半径画弧,与数轴交于点C,则点C对应的数是_____.
    5、如图是两个全等的三角形,图中字母表示三角形的边长,则∠的度数为________º.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,等腰直角△ABC中,∠BAC=90°,在BC上取一点D,使得CD=AB,作∠ABC的角平分线交· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    AD于E,请先按要求继续完成图形:以A为直角顶点,在AE右侧以AE为腰作等腰直角△AEF,其中∠EAF=90°.再解决以下问题:
    (1)求证:B,E,F三点共线;
    (2)连接CE,请问△ACE的面积和△ABF的面积有怎样的数量关系,并说明理由.
    2、如图,已知函数y1=x+1的图像与y轴交于点A,一次函数y2=kx+b的图像经过点B(0,-1),并且与x轴以及y1=x+1的图像分别交于点C、D,点D的横坐标为1.
    (1)求y2函数表达式;
    (2)在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.
    (3)若一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.求函数y3=mx+n的表达式.
    3、如图,已知△ABC.
    (1)请用尺规完成以下作图:延长线段BC,并在线段BC的延长线上截取CD=AC,连接AD;在BD下方,作∠DBE=∠ADB;
    (2)若AB=AC,利用(1)完成的图形,猜想∠ABE与∠DBE存在的数量关系,并证明你的结论;
    (3)若AB=AC=3,BC=4,利用(1)完成的图形,计算AD的长度.
    4、已知二元一次方程,通过列举将方程的解写成下列表格的形式,
    如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是.
    (1)①表格中的______,______;
    ②根据以上确定対应点坐标的方法,在所给的直角坐标系中画出表格中给出的三个解的对应点;
    (2)若点,恰好都落在的解对应的点组成的图象上,求a,b的值.
    5、已知关于x的一元二次方程x2−(2m−2)x+(m2−2m)=0.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)请说明该方程实数根的个数情况;
    (2)如果方程的两个实数根为x1,x2,且(x1+1)⋅(x2+1)=8,求m的值.
    -参考答案-
    一、单选题
    1、B
    【分析】
    直接根据圆周角定理求解.
    【详解】
    解:,

    故选:B.
    【点睛】
    本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    2、B
    【分析】
    科学记数法的表示形式为的形式,其中,n为整数;确定n的值时,要把原数变成a,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数的绝对值大于10时,n为正整数,当原数的绝对值小于1时,n为负整数.
    【详解】
    故选:B
    【点睛】
    本题考查了科学记数法的表示方法;科学记数法的表示形式为的形式,其中,n为整数,熟练地掌握科学记数法的表示方法是解本题的关键.
    3、C
    【分析】
    补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
    【详解】
    解:∵,
    ∴的补角等于,
    故选:C.
    【点睛】
    本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
    4、D
    【分析】
    两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.
    【详解】
    解:∵3600÷20=180米/分,
    ∴两人同行过程中的速度为180米/分,故A选项不符合题意;
    ∵东东在爸爸返回5分钟后返回即第20分钟返回
    ∴m=20-5=15,
    ∴n=180×15=2700,故B选项不符合题意;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;
    ∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,
    ∴运动18分钟时两人相距3240-2430=810米;
    ∵返程过程中东东45-20=25分钟走了3600米,
    ∴东东返程速度=3600÷25=144米/分,
    ∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,
    ∴运动31分钟两人相距756米,故D选项符合题意;
    故选D.
    【点睛】
    本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
    5、B
    【分析】
    根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
    【详解】
    ∵BD的垂直平分线交AB于点E,



    ∵将沿AD折叠,点C恰好与点E重合,
    ∴,,





    故选:B.
    【点睛】
    本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
    6、B
    【分析】
    根据三角形外角的性质可直接进行求解.
    【详解】
    解:∵,,
    ∴;
    故选B.
    【点睛】
    本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
    7、C
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.
    【详解】
    解:
    A、不是中心对称图形,是轴对称图形,故此选项错误;
    B、是中心对称图形,不是轴对称图形,故此选项错误;
    C、是中心对称图形,也是轴对称图形,故此选项正确;
    D、不是中心对称图形,是轴对称图形,故此选项错误;
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    8、B
    【分析】
    证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依据,推出,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,∠ACB=45°,求出∠BMC=90°,即可判断③正确.
    【详解】
    解:∵与都是以A为直角顶点的等腰直角三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE,
    ∴,故①正确;
    ∵△BAD≌△CAE,
    ∴∠ABD=∠ACE,
    ∵∠ABD+∠DBC=45°,
    ∴∠ACE+∠DBC=45°,
    ∵,
    ∴,
    ∴不成立,故②错误;
    设BD交CE于M,
    ∵∠ACE+∠DBC=45°,∠ACB=45°,
    ∴∠BMC=90°,
    ∴,故③正确,
    故选:B.
    【点睛】
    此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键.
    9、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    10、A
    【分析】
    根据等式的性质把变形为;再根据表格中的数据求解即可.
    【详解】
    解:关于x的方程变形为,
    由表格中的数据可知,当时,;
    故选:A.
    【点睛】
    本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.
    二、填空题
    1、##
    【解析】
    【分析】
    根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.
    【详解】
    解:由于P为线段AB=2的黄金分割点,且AP是较长线段;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    则AP=2×=,
    故答案为:.
    【点睛】
    本题考查了黄金分割点即线段上一点把线段分成较长和较短的两条线段,且较长线段的平方等于较短线段与全线段的积,熟练掌握黄金分割点的公式是解题的关键.
    2、##∠BAE
    【解析】
    【分析】
    根据内错角的意义,结合具体的图形进行判断即可.
    【详解】
    解:由内错角的意义可得,与是内错角,
    故答案为:.
    【点睛】
    本题考查内错角,掌握内错角的意义是正确解答的前提.
    3、9
    【解析】
    【分析】
    只要证明△ADE∽△FGH,可得,由此即可解决问题.
    【详解】
    解:∵BG:GH:HC=4:6:5,可以假设BG=4k,GH=6k,HC=5k,
    ∵DE∥BC,FG∥AB,FH∥AC,
    ∴四边形BGFD是平行四边形,四边形EFHC是平行四边形,
    ∴DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,∠FGH=∠B=∠ADE,∠FHG=∠C=∠AED,
    ∴△ADE∽△FGH,
    ∴.
    ∵△FGH的面积是4,
    ∴△ADE的面积是9,
    故答案为:9.
    【点睛】
    本题考查了相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
    4、
    【解析】
    【分析】
    先利用勾股定理求出,再根据作图过程可得,然后根据实数与数轴的关系即可得.
    【详解】
    解:由题意得:,

    由作图过程可知,,
    由数轴的性质可知,点对应的数大于0,
    则在数轴上,点对应的数是,
    故答案为:.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查了勾股定理、实数与数轴,掌握理解勾股定理是解题关键.
    5、70
    【解析】
    【分析】
    如图(见解析),先根据三角形的内角和定理可得,再根据全等三角形的性质即可得.
    【详解】
    解:如图,由三角形的内角和定理得:,
    图中的两个三角形是全等三角形,在它们中,边长为和的两边的夹角分别为和,

    故答案为:70.
    【点睛】
    本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.
    三、解答题
    1、
    (1)见解析
    (2)△ACE的面积和△ABF的面积相等.理由见解析
    【分析】
    (1)利用等腰直角三角形的性质得到∠CAD=∠CDA=67.5°,利用角平分线的性质得到∠ABE=∠DBE=22.5°,∠BEA=135°,即可推出∠BEA+∠AEF=180°;
    (2)证明Rt△AEG≌Rt△AFH,利用全等三角形的性质得到EG= FH,则△ACE和△ABF等底等高,即可证明结论.
    (1)
    证明:∵等腰直角△ABC中,∠BAC=90°,
    ∴∠ABC=∠C=45°,AB=AC,
    ∵CD=AB,则CD=AC,
    ∴∠CAD=∠CDA==67.5°,
    ∴∠BAE=90°-∠CAD=22.5°,
    ∵AD平分∠ABC,
    ∴∠ABE=∠DBE=22.5°,
    ∴∠BEA=180°-∠ABE-∠BAE=135°,
    ∵△AEF是等腰直角三角形,且∠EAF=90°,
    ∴∠AEF=∠F=45°,
    ∴∠BEA+∠AEF=180°,
    ∴B,E,F三点共线;
    (2)
    解:△ACE的面积和△ABF的面积相等.理由如下:
    过点E作EG⊥AC于点G,过点F作FH⊥BA交BA延长线于点H,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵∠HAF=180°-∠BAE-∠EAF=180°-22.5°-90°=67.5°,∠CAE=67.5°,
    ∴∠HAF=∠CAE,
    ∵△AEF是等腰直角三角形,
    ∴AE=AF,
    ∴Rt△AEG≌Rt△AFH,
    ∴EG= FH,
    ∵AB=AC,
    ∴△ACE和△ABF等底等高,
    ∴△ACE的面积和△ABF的面积相等.
    【点睛】
    本题考查了等腰直角三角形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
    2、(1)y=3x−1;(2)(0,5),(0,−1−),(0,−1),(0,).
    (3)y3=x+或y3=x.
    【分析】
    (1)把D坐标代入y=x+1求出n的值,确定出D坐标,把B与D坐标代入y=kx+b中求出k与b的值,确定出直线BD解析式;
    (2)如图所示,设P(0,p)分三种情况考虑:当BD=PD;当BD=BP时;当BP=DP时,分别求出p的值,确定出所求即可;
    (3)先求出四边形AOCD的面积,再分情况讨论即可求解.
    【详解】
    解:(1)把D坐标(1,n)代入y=x+1中得:n=2,即D(1,2),
    把B(0,−1)与D(1,2)代入y=kx+b中得:,
    解得:,
    ∴直线BD解析式为y=3x−1,
    即y2函数表达式为y=3x−1;
    (2)如图所示,设P(0,p)分三种情况考虑:
    当BD=PD时,可得(0−1)2+(−1−2)2=(0−1)2+(p−2)2,
    解得:p=5或p=−1(舍去),此时P1(0,5);
    当BD=BP时,可得(0−1)2+(−1−2)2=(p+1)2,
    解得:p=−1±,
    此时P2(0,−1+),P3(0,−1− );
    当BP=DP时,可得(p+1)2=(0−1)2+(p−2)2,
    解得:p=,即P4(0,),
    综上,P的坐标为(0,5),(0,−1−),(0,−1),(0,).
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (3)对于直线y=x+1,令y=0,得到x=−1,即E(−1,0);令x=0,得到y=1,
    ∴A(0,1)
    对于直线y=3x−1,令y=0,得到x=,即C(,0),
    则S四边形AOCD=S△DEC−S△AEO=××2− ×1×1=
    ∵一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.
    ①设一次函数y3=mx+n的图像与y轴交于Q1点,
    ∴S△ADQ1=S四边形AOCD=

    ∴AQ1=
    ∴Q1(0,)
    把D(1,2)、Q1(0,)代入y3=mx+n得
    解得
    ∴y3=x+;
    ②设一次函数y3=mx+n的图像与x轴交于Q2点,
    ∴S△CDQ2=S四边形AOCD=

    ∴CQ2=
    ∴Q2(,0)
    把D(1,2)、Q2(,0)代入y3=mx+n得
    解得
    ∴y3=x;
    综上函数y3=mx+n的表达式为y3=x+或y3=x.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,利用了分类讨论的思想,熟练掌握一次函数性质是解本题的关键.
    3、
    (1)作图见解析
    (2),证明见解析
    (3)
    【分析】
    (1)根据作一条线段等于已知线段,作一个角等于已知角的步骤,逐步作图即可;
    (2)根据等边对等角证明结合三角形的外角的性质证明:再结合已知条件可得结论;
    (3)如图,过A作于K,理由等腰三角形的性质与勾股定理分别求解 再可以勾股定理求解即可.
    (1)
    解:如图,①延长BC,在射线BC上截取 连接AD,
    ②以D为圆心,任意长为半径画弧,交于
    ③以B为圆心,DP为半径画弧,交BC于H,
    ④以H为圆心,PQ为半径画弧,与前弧交于点E,
    再作射线BE即可.
    (2)
    解:;理由如下;






    (3)
    解:如图,过A作于K,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·



    【点睛】
    本题考查的是作一条线段等于已知线段,作一个角等于已知角,等腰三角形的性质,勾股定理的应用,三角形的外角的性质,熟练的运用等边对等角是解本题的关键.
    4、
    (1)①4,5;②图见解析
    (2)
    【分析】
    (1)①将代入方程可得的值,将代入方程可得的值;
    ②先确定三个解的对应点的坐标,再在所给的平面直角坐标系中画出即可得;
    (2)将点,代入方程可得一个关于二元一次方程组,解方程组即可得.
    (1)
    解:①将代入方程得:,
    解得,即,
    将代入方程得:,
    解得,即,
    故答案为:4,5;
    ②由题意,三个解的对应点的坐标分别为,,,
    在所给的平面直角坐标系中画出如图所示:
    (2)
    解:由题意,将代入得:,
    整理得:,
    解得.
    【点睛】
    本题考查了二元一次方程(组)、平面直角坐标系等知识点,熟练掌握二元一次方程组的解法是解题关键.
    5、
    (1)方程有两个不相等的实数根
    (2)m=3或-3
    【分析】
    (1)根据根的判别式先求出Δ的值,再判断即可;
    (2)根据根与系数的关系得出x1+x2=2m-2,x1•x2=m2-2m,代入计算即可求出答案.
    (1)
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:∵a=1,b=−(2m−2),c= m2−2m,
    ∴ =2-4(m2-2m)=4m2-8m+4-4m2+8m=4>0,
    ∴方程有两个不相等的实数根;
    (2)
    解:∵(x1+1)⋅(x2+1)=8,
    整理得x1x2+(x1+x2)+1=8,
    ∵x1+x2=2m-2,x1x2=m2-2m,
    ∴m2-2m+2m-2+1=8,
    ∴m2=9,
    ∴m=3或m=-3.
    【点睛】
    本题考查了根的判别式以及根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法.
    x
    -1
    0
    1
    2
    3
    -8
    -4
    0
    4
    8
    x
    -3
    -1
    n
    y
    6
    m
    -2

    相关试卷

    模拟真题湖南省邵阳市中考数学模拟真题 (B)卷(含答案及解析):

    这是一份模拟真题湖南省邵阳市中考数学模拟真题 (B)卷(含答案及解析),共30页。

    模拟真题湖南省邵阳市中考数学历年真题定向练习 卷(Ⅰ)(含详解):

    这是一份模拟真题湖南省邵阳市中考数学历年真题定向练习 卷(Ⅰ)(含详解),共25页。试卷主要包含了下列函数中,随的增大而减小的是,一元二次方程的根为.,下列计算中,正确的是等内容,欢迎下载使用。

    【真题汇总卷】湖南省湘潭市中考数学第二次模拟试题(含答案详解):

    这是一份【真题汇总卷】湖南省湘潭市中考数学第二次模拟试题(含答案详解),共27页。试卷主要包含了下列函数中,随的增大而减小的是,下列图像中表示是的函数的有几个等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map