年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    模拟真题湖南省武冈市中考数学模拟考试 A卷(含详解)

    模拟真题湖南省武冈市中考数学模拟考试 A卷(含详解)第1页
    模拟真题湖南省武冈市中考数学模拟考试 A卷(含详解)第2页
    模拟真题湖南省武冈市中考数学模拟考试 A卷(含详解)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模拟真题湖南省武冈市中考数学模拟考试 A卷(含详解)

    展开

    这是一份模拟真题湖南省武冈市中考数学模拟考试 A卷(含详解),共24页。试卷主要包含了已知,则的补角等于,下列图像中表示是的函数的有几个,下列方程变形不正确的是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知单项式5xayb+2的次数是3次,则a+b的值是( )
    A.1B.3C.4D.0
    2、下列现象:
    ①用两个钉子就可以把木条固定在墙上
    ②从A地到B地架设电线,总是尽可能沿着线段AB架设
    ③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线
    ④把弯曲的公路改直,就能缩短路程
    其中能用“两点之间线段最短”来解释的现象有( )
    A.①④B.①③C.②④D.③④
    3、下列图标中,轴对称图形的是( )
    A.B.C.D.
    4、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
    A.B.C.D.
    5、已知,则的补角等于( )
    A.B.C.D.
    6、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )
    A.16B.19C.24D.36
    7、春节假期期间某一天早晨的气温是,中午上升了,则中午的气温是( )
    A.B.C.D.
    8、下列图像中表示是的函数的有几个( )
    A.1个B.2个C.3个D.4个
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    9、下列方程变形不正确的是( )
    A.变形得:
    B.方程变形得:
    C.变形得:
    D.变形得:
    10、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.
    2、若代数式的值是3,则多项式的值是______.
    3、已知:直线与直线的图象交点如图所示,则方程组的解为______.
    4、当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图1可得等式:.
    (1)由图2可得等式:________;
    (2)利用(1)中所得到的结论,解决下面的问题:已知且,则_______.
    5、已知3x﹣3•9x=272,则x的值是 ___.
    三、解答题(5小题,每小题10分,共计50分)
    1、计算:(x+2)(4x﹣1)+2x(2x﹣1).
    2、已知:如图,锐角∠AOB.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    求作:射线OP,使OP平分∠AOB.
    作法:
    ①在射线OB上任取一点M;
    ②以点M为圆心,MO的长为半径画圆,分别交射线OA,OB于C,D两点;
    ③分别以点C,D为圆心,大于的长为半径画弧,在∠AOB内部两弧交于点H;
    ④作射线MH,交⊙M于点P;
    ⑤作射线OP.
    射线OP即为所求.
    (1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
    (2)完成下面的证明.
    证明:连接CD.
    由作法可知MH垂直平分弦CD.
    ∴( )(填推理依据).
    ∴∠COP = .
    即射线OP平分∠AOB.
    3、如图,ABCD,,,试说明:BCDE.请补充说明过程,并在括号内填上相应的理由.
    解:∵ABCD(已知),

    又(已知),



    BCDE .
    4、已知平行四边形的顶点、分别在其的边、上,顶点、在其的对角线上.

    图1 图2
    (1)如图1,求证:;
    (2)如图2,若,,求的值;
    (3)如图1,当,,求时,求的值.
    5、如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE(AC﹣AB).
    -参考答案-
    一、单选题
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    1、A
    【分析】
    根据单项式的次数的概念求解.
    【详解】
    解:由题意得:a+b+2=3,
    ∴a+b=1.
    故选:A.
    【点睛】
    本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.
    2、C
    【分析】
    直接利用直线的性质和线段的性质分别判断得出答案.
    【详解】
    解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;
    ②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;
    ③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;
    ④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.
    故选:C.
    【点睛】
    本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.
    3、A
    【详解】
    解:A、是轴对称图形,故本选项符合题意;
    B、不是轴对称图形,故本选项不符合题意;
    C、不是轴对称图形,故本选项不符合题意;
    D、不是轴对称图形,故本选项不符合题意;
    故选:A
    【点睛】
    本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
    4、B
    【分析】
    根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
    【详解】
    解:∵ADBC,
    ∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
    ∴,故A正确,不符合题意;
    ∵ADBC,
    ∴△DOE∽△BOF,
    ∴,
    ∴,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴,故B错误,符合题意;
    ∵ADBC,
    ∴△AOD∽△COB,
    ∴,
    ∴,故C正确,不符合题意;
    ∴ ,
    ∴,故D正确,不符合题意;
    故选:B
    【点睛】
    本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
    5、C
    【分析】
    补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
    【详解】
    解:∵,
    ∴的补角等于,
    故选:C.
    【点睛】
    本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
    6、C
    【分析】
    分别求出各视图的面积,故可求出表面积.
    【详解】
    由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5
    故表面积为2×(4+3+5)=24
    故选C.
    【点睛】
    此题主要考查三视图的求解与表面积。解题的关键是熟知三视图的性质特点.
    7、B
    【分析】
    根据题意可知,中午的气温是,然后计算即可.
    【详解】
    解:由题意可得,
    中午的气温是:°C,
    故选:.
    【点睛】
    本题考查有理数的加法,解答本题的关键是明确有理数加法的计算方法.
    8、A
    【分析】
    函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
    【详解】
    解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故第2个图符合题意,其它均不符合,
    故选:A.
    【点睛】
    本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
    9、D
    【分析】
    根据等式的性质解答.
    【详解】
    解:A. 变形得:,故该项不符合题意;
    B. 方程变形得:,故该项不符合题意;
    C. 变形得:,故该项不符合题意;
    D. 变形得:,故该项符合题意;
    故选:D.
    【点睛】
    此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键.
    10、B
    【分析】
    根据三角尺可得,根据三角形的外角性质即可求得
    【详解】
    解:
    故选B
    【点睛】
    本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
    二、填空题
    1、90
    【解析】
    【分析】
    根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.
    【详解】
    如图,根据折叠的性质,∠1=∠2,∠3=∠4,
    ∵∠1+∠2+∠3+∠4=180°,
    ∴2∠2+2∠3=180°,
    ∴∠2+∠3=90°,
    ∴=90°,
    故答案为:90.
    【点睛】
    本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    2、1
    【解析】
    【分析】
    先观察,再由已知求出6a-3b=9,然后整体代入求解即可.
    【详解】
    解:∵2a-b=3,
    ∴6a-3b=9,
    ∴6a-(3b+8)=(6a-3b)-8=9-8=1,
    故答案为:1.
    【点睛】
    本题考查代数式求值、整式的加减,利用整体代入求解是解答的关键.
    3、
    【解析】
    【分析】
    根据函数图象与二元一次方程组的关系,求方程组的解,就是求两方程所表示的两一次函数图象交点的坐标,从而得出答案.
    【详解】
    解:∵函数y=x-b与函数y=mx+6的交点坐标是(2,3),
    ∴方程组的解为.
    故答案为.
    【点睛】
    本题主要考查了一次函数与二元一次方程组的关系,比较简单,熟悉交点坐标就是方程组的解是解题的关键.
    4、 2
    【解析】
    【分析】
    (1)方法一:直接利用正方形的面积公式可求出图形的面积;方法二:利用图形的面积等于9部分的面积之和,根据方法一和方法二的结果相等建立等式即可得;
    (2)先将已知等式利用完全平方公式、整式的乘法法则变形为,再利用(1)的结论可得,从而可得,由此即可得出答案.
    【详解】
    解:(1)方法一:图形的面积为,
    方法二:图形的面积为,
    则由图2可得等式为,
    故答案为:;
    (2),


    利用(1)的结论得:,

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ,即,


    故答案为:2.
    【点睛】
    本题考查了完全平方公式与图形面积、整式乘法的应用,熟练掌握完全平方公式和整式的运算法则是解题关键.
    5、3
    【解析】
    【分析】
    根据幂的乘方,底数不变指数相乘,同底数幂相乘,底数不变指数相加,计算后再根据指数相等列式求解即可.
    【详解】
    解:∵3x-3•9x=3x-3•32x=3x-3+2x=36,
    ∴x-3+2x=6,
    解得x=3.
    故答案为:3.
    【点睛】
    此题考查同底数幂的乘法以及幂的乘方与积的乘方,关键是等式两边均化为底数均为3的幂进行计算.
    三、解答题
    1、
    【分析】
    根据单项式乘以多项式,多项式乘以多项式的法则进行乘法运算,再合并同类项即可.
    【详解】
    解:
    【点睛】
    本题考查的是整式的乘法运算,掌握“单项式乘以多项式与多项式乘以多项式的法则”是解本题的关键.
    2、
    (1)见解析
    (2)垂径定理及推论;∠DOP
    【分析】
    (1)根据题干在作图方法依次完成作图即可;
    (2)由垂径定理先证明 再利用圆周角定理证明即可.
    (1)
    解:如图, 射线OP即为所求.
    (2)
    证明:连接CD.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    由作法可知MH垂直平分弦CD.
    ∴( 垂径定理 )(填推理依据).
    ∴∠COP =.
    即射线OP平分∠AOB.
    【点睛】
    本题考查的是平分线的作图,垂径定理的应用,圆周角定理的应用,熟练的运用垂径定理证明是解本题的关键.
    3、两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行
    【分析】
    由题意根据平行线的性质与判定即可补充说理过程.
    【详解】
    解:(已知),
    (两直线平行,内错角相等),
    又(已知),
    (等量代换),
    (已知),

    (同旁内角互补,两直线平行).
    故答案为:两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行.
    【点睛】
    本题考查平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.
    4、
    (1)证明见解析
    (2)
    (3)
    【分析】
    (1)根据四边形,四边形都是平行四边形,得到和,然后证明,即可证明出;
    (2)作于M点,设,首先根据,证明出四边形和四边形都是矩形,然后根据同角的余角相等得到,然后根据同角的三角函数值相等得到,即可表示出BF和FH的长度,进而可求出的值;
    (3)过点E作于M点,首先根据题意证明出,得到,,然后根据等腰三角形三线合一的性质得到,设,根据题意表示出,,过点E作,交BD于N,然后由证明出,设,根据相似三角形的性质得出,然后由30°角所对直角边是斜边的一半得到,进而得到,解方程求出,然后表示出,根据勾股定理得到EH和EF的长度,即可求出的值.
    (1)
    解:∵四边形EFGH是平行四边形

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ∵四边形ABCD是平行四边形


    在和中



    ∴;
    (2)
    解:如图所示,作于M点,设
    ∵四边形和四边形都是平行四边形,
    ∴四边形和四边形都是矩形



    ∴,





    由(1)得:

    ∴;
    (3)
    解:如图所示,过点E作于M点
    ∵四边形ABCD是平行四边形


    ∴,即


    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·








    由(1)得:


    过点E作,交BD于N
















    解得:或(舍去)

    由勾股定理得:
    ∴.
    【点睛】
    此题考查了矩形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握矩形的性质,相似三角形的性质和判定,勾股定理,根据题意正确作出辅助线求解.
    5、见解析
    【分析】
    根据全等三角形的判定与性质,可得∠ABF=∠AFB,AB=AF,BE=EF,根据三角形外角的性质,可得· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∠C+∠CBF=∠AFB=∠ABF,根据角的和差、等量代换,可得∠CBF=∠C,根据等腰三角形的判定,可得BF=CF,根据线段的和差、等式的性质,可得答案
    【详解】
    证明:如图:延长BE交AC于点F,
    ∵BF⊥AD,
    ∴∠AEB=∠AEF.
    ∵AD平分∠BAC
    ∴∠BAE=∠FAE
    在△ABE和△AFE中,
    ∴△ABE≌△AFE (ASA)
    ∴∠ABF=∠AFB, AB=AF, BE=EF
    ∵∠C+∠CBF=∠AFB=∠ABF
    ∴∠ABF+∠CBF=∠ABC=3∠C
    ∴∠C+2∠CBF=3∠C
    ∴∠CBF=∠C
    ∴BF=CF
    ∴BE=BF=CF
    ∵CF=AC-AF=AC-AB
    ∴BE= (AC-AB)
    【点睛】
    本题考查了等腰三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质,等量代换,等式的性质,利用等量代换得出∠CBF=∠C是解题关键

    相关试卷

    中考数学湖南省武冈市中考数学模拟真题练习 卷(Ⅱ)(含答案详解):

    这是一份中考数学湖南省武冈市中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共26页。试卷主要包含了如图个三角形.等内容,欢迎下载使用。

    中考数学湖南省武冈市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解):

    这是一份中考数学湖南省武冈市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共34页。试卷主要包含了下列等式变形中,不正确的是,下列式子中,与是同类项的是等内容,欢迎下载使用。

    【真题汇总卷】湖南省武冈市中考数学三年真题模拟 卷(Ⅱ)(含答案详解):

    这是一份【真题汇总卷】湖南省武冈市中考数学三年真题模拟 卷(Ⅱ)(含答案详解),共22页。试卷主要包含了如图,下列条件中不能判定的是,一元二次方程的根为.,利用如图①所示的长为a等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map