模拟真题湖南省张家界市中考数学一模试题(含答案详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
A.B.C.D.
2、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
A.abB.a+bC.abD.a
3、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为( )
A.15°B.10°C.20°D.25°
4、下列计算中,正确的是( )
A.a2+a3=a5B.a•a=2aC.a•3a2=3a3D.2a3﹣a=2a2
5、整式的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:
则关于x的方程的解为( )
A.B.C.D.
6、如图,AD为的直径,,,则AC的长度为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.4D.
7、如图,在中,D是延长线上一点,,,则的度数为( )
A.B.C.D.
8、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
A.B.C.D.
9、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为( ).
A.B.C.D.
10、如图,、是的切线,、是切点,点在上,且,则等于( )
A.54°B.58°C.64°D.68°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在菱形中,对角线与之比是,那么________.
2、当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图1可得等式:.
(1)由图2可得等式:________;
(2)利用(1)中所得到的结论,解决下面的问题:已知且,则_______.
3、如图,射线,相交于点,则的内错角是__.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、不等式的解集是__.
5、如图,AC为正方形ABCD的对角线,E为AC上一点,连接EB,ED,当时,的度数为______.
三、解答题(5小题,每小题10分,共计50分)
1、阅读理解题
在求两位数乘两位数时,可以用“列竖式”的方法进行速算,例如:
你能理解上述三题的解题思路吗?理解了,请完成:如图给出了部分速算过程,可得 , , , , , .
2、如图,在平面直角坐标系xOy中,直线l是第一、三象限的角平分线.已知的三个顶点坐标分别为,,.
(1)若与关于y轴对称,画出;
(2)若在直线l上存在点P,使的周长最小,则点P的坐标为______.
3、如图,ABCD,,,试说明:BCDE.请补充说明过程,并在括号内填上相应的理由.
解:∵ABCD(已知),
,
又(已知),
,
,
,
BCDE .
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:
(1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;
(2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;
(3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?
5、如图,在直角坐标系内,把y=x的图象向下平移1个单位得到直线AB,直线AB分别交x轴于点A,交y轴于点B,C为线段AB的中点,过点C作AB的垂线,交y轴于点D.
(1)求A,B两点的坐标;
(2)求BD的长;
(3)直接写出所有满足条件的点E;点E在坐标轴上且△ABE为等腰三角形.
-参考答案-
一、单选题
1、A
【分析】
如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
【详解】
解:如图:过C作CE⊥OA,垂足为E,
∵菱形OABC,
∴OC=OA=4
∵,
∴∠OCE=30°
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵OC=4
∴OE=2
∴CE=
∴点C的坐标为.
故选A.
【点睛】
本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
2、B
【分析】
先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.
【详解】
解:∵△ABC、△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵AF=CF,
∴∠ABD=∠CBD=∠ACE=30°,
∴点E在射线CE上运动(∠ACE=30°),
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
∵CA=CM,∠ACM=60°,
∴△ACM是等边三角形,
∴△ACM≌△ACB,
∴FM=FB=b,
∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
故选:B.
【点睛】
此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
3、A
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.
【详解】
∵DE∥AF,
∴∠CDE=∠CFA=45°,
∵∠CFA=∠B+∠BAF,∠B=30°,
∴∠BAF=15°,
故选A.
【点睛】
本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.
4、C
【分析】
根据整式的加减及幂的运算法则即可依次判断.
【详解】
A. a2+a3不能计算,故错误;
B. a•a=a2,故错误;
C. a•3a2=3a3,正确;
D. 2a3﹣a=2a2不能计算,故错误;
故选C.
【点睛】
此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则.
5、A
【分析】
根据等式的性质把变形为;再根据表格中的数据求解即可.
【详解】
解:关于x的方程变形为,
由表格中的数据可知,当时,;
故选:A.
【点睛】
本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.
6、A
【分析】
连接CD,由等弧所对的圆周角相等逆推可知AC=DC,∠ACD=90°,再由勾股定理即可求出.
【详解】
解:连接CD
∵
∴AC=DC
又∵AD为的直径
∴∠ACD=90°
∴
∴
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:A.
【点睛】
本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.
7、B
【分析】
根据三角形外角的性质可直接进行求解.
【详解】
解:∵,,
∴;
故选B.
【点睛】
本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
8、B
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
9、C
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
解:∵袋子中共有6个小球,其中白球有3个,
∴摸出一个球是白球的概率是.
故选:C.
【点睛】
本题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
10、C
【分析】
连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
【详解】
解:连接,,如下图:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴
∵PA、PB是的切线,A、B是切点
∴
∴由四边形的内角和可得:
故选C.
【点睛】
此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
二、填空题
1、
【解析】
【分析】
首先根据菱形的性质得到,然后由对角线与之比是,可求得,然后根据正弦值的概念求解即可.
【详解】
解:如图所示,
∵在菱形中,
∴
∵对角线与之比是,即
∴
∴设,
∵菱形的对角线互相垂直,即
∴在中,
∴
故答案为:.
【点睛】
此题考查了菱形的性质,勾股定理和三角函数等知识,解题的关键是熟练掌握菱形的性质,勾股定理和三角函数的概念.
2、 2
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【解析】
【分析】
(1)方法一:直接利用正方形的面积公式可求出图形的面积;方法二:利用图形的面积等于9部分的面积之和,根据方法一和方法二的结果相等建立等式即可得;
(2)先将已知等式利用完全平方公式、整式的乘法法则变形为,再利用(1)的结论可得,从而可得,由此即可得出答案.
【详解】
解:(1)方法一:图形的面积为,
方法二:图形的面积为,
则由图2可得等式为,
故答案为:;
(2),
,
,
利用(1)的结论得:,
,
,即,
,
,
故答案为:2.
【点睛】
本题考查了完全平方公式与图形面积、整式乘法的应用,熟练掌握完全平方公式和整式的运算法则是解题关键.
3、##∠BAE
【解析】
【分析】
根据内错角的意义,结合具体的图形进行判断即可.
【详解】
解:由内错角的意义可得,与是内错角,
故答案为:.
【点睛】
本题考查内错角,掌握内错角的意义是正确解答的前提.
4、##
【解析】
【分析】
移项合并化系数为1即可.
【详解】
.
移项合并同类项,得:.
化系数为.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:.
【点睛】
本题考查一次不等式的解法,掌握一般步骤是关键,属于基础题.
5、18°##18度
【解析】
【分析】
由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=∠BED=63°,由三角形的外角的性质可求解.
【详解】
证明:∵四边形ABCD是正方形,
∴AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,
在△DCE和△BCE中,
,
∴△DCE≌△BCE(SAS),
∴∠CED=∠CEB=∠BED=63°,
∵∠CED=∠CAD+∠ADE,
∴∠ADE=63°-45°=18°,
故答案为:18°.
【点睛】
本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE≌△BCE是本题的关键.
三、解答题
1、能,4,8,2,8,7,4
【分析】
根据表格发现规律:“第二行的前两格是两个两位数的十位数字相乘得到的结果,积如果是一位数前面补0,第二行的后两格是两个两位数的个位数字相乘得到的结果,积如果是一位数前面补0,第三行的前三格是第一个两位数字的个位数字乘以第二个两位数的十位数字再加上第二个两位数的十位数字乘以第二个两位数的个位数字,第四行,同列的两个数相加,如果大于9,进一位.”即可得到答案.
【详解】
由题意得,
第二行的前两格是两个两位数的十位数字相乘得到的结果,积如果是一位数前面补0;
第二行的后两格是两个两位数的个位数字相乘得到的结果,积如果是一位数前面补0;
第三行的前三格是第一个两位数字的个位数字乘以第二个两位数的十位数字再加上第二个两位数的十位数字乘以第二个两位数的个位数字,如第二个表格:;
第四行,同列的两个数相加,如果大于9,进一位,
∵,
,
,
,
,,,,,,
故答案为4,8,2,8,7,4.
【点睛】
本题属于与有理数乘法有关的规律探索题,根据表格发现规律是解决问题的关键.
2、
(1)见解析
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)
【分析】
(1)根据关于y轴对称的点的坐标特征,先得到A、B、C关于y轴对称的对应点、、的坐标,然后在坐标系中描出、、三点,最后顺次连接、、三点即可得到答案;
(2)作B关于直线l的对称点,连接与直线l交于点P,点P即为所求.
(1)
解:如图所示,即为所求;
(2)
解:如图所示,作B关于直线l的对称点,连接与直线l交于点P,点P即为所求,
由图可知点P的坐标为(3,3).
【点睛】
本题主要考查了画轴对称图形,关于y轴对称的点的坐标特征,轴对称—最短路径问题,熟知相关知识是解题的关键.
3、两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行
【分析】
由题意根据平行线的性质与判定即可补充说理过程.
【详解】
解:(已知),
(两直线平行,内错角相等),
又(已知),
(等量代换),
(已知),
,
(同旁内角互补,两直线平行).
故答案为:两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.
4、
(1)12%.补图见解析
(2)270
(3)12.5%
【分析】
(1)用冰壶的人所占百分比减去4个百分点即可求出百分比,按照百分比补全统计图即可;
(2)用120人除以体验过冰壶运动的百分比求出总人数,再乘以滑雪的百分比即可;
(3)求出体验过滑雪的人比体验过滑冰的人多多少人,再求出百分比即可.
(1)
解:都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的百分比为:16%-4%=12%,不全统计图如图:
故答案为:12%.
(2)
解:调查的总人数为:120÷24%=500(人),
参加过滑雪的人数为:500×54%=270(人),
故答案为:270
(3)
解:体验过滑冰的人数为:500×48%=240(人),
(270-240)÷240=12.5%,
体验过滑雪的人比体验过滑冰的人多12.5%.
【点睛】
本题考查了条形统计图,解题关键是准确从条形统计图中获取信息,正确进行计算求解.
5、
(1),
(2)
(3),,,,,,,
【分析】
(1)先根据一次函数图象的平移可得直线的函数解析式,再分别求出时的值、时的值即可得;
(2)设点的坐标为,从而可得,再根据线段垂直平分线的判定与性质可得,建立方程求出的值,由此即可得;
(3)分①点在轴上,②点在轴上两种情况,分别根据建立方程,解方程即可得.
(1)
解:由题意得:直线的函数解析式为,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
当时,,解得,即,
当时,,即;
(2)
解:设点的坐标为,
,,
点为线段的中点,,
垂直平分,
,即,
解得,
则;
(3)
解:由题意,分以下两种情况:
①当点在轴上时,设点的坐标为,
则,
,
,
(Ⅰ)当时,为等腰三角形,
则,解得或,
此时点的坐标为或;
(Ⅱ)当时,为等腰三角形,
则,解得或,
此时点的坐标为或(与点重合,舍去);
(Ⅲ)当时,为等腰三角形,
则,解得,
此时点的坐标为;
②当点在轴上时,设点的坐标为,
则,
,
,
(Ⅰ)当时,为等腰三角形,
则,解得或,
此时点的坐标为或(与点重合,舍去);
(Ⅱ)当时,为等腰三角形,
则,解得或,
此时点的坐标为或;
(Ⅲ)当时,为等腰三角形,
则,解得,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此时点的坐标为;
综上,所有满足条件的点的坐标为,,,,,,,.
【点睛】
本题考查了一次函数图象的平移、线段垂直平分线的判定与性质、等腰三角形、两点之间的距离公式等知识点,较难的是题(3),正确分情况讨论是解题关键.
x
-1
0
1
2
3
-8
-4
0
4
8
备考练习湖南省张家界市中考数学一模试题(含答案及详解): 这是一份备考练习湖南省张家界市中考数学一模试题(含答案及详解),共38页。试卷主要包含了下列各式中,不是代数式的是,下列图标中,轴对称图形的是等内容,欢迎下载使用。
【真题汇总卷】湖南省中考数学一模试题(含详解): 这是一份【真题汇总卷】湖南省中考数学一模试题(含详解),共25页。试卷主要包含了下列图形是全等图形的是,已知,则的补角等于等内容,欢迎下载使用。
【真题汇编】湖南省中考数学一模试题(含答案详解): 这是一份【真题汇编】湖南省中考数学一模试题(含答案详解),共28页。试卷主要包含了下列计算中,正确的是,如图,下列条件中不能判定的是等内容,欢迎下载使用。