模拟真题湖南省株洲市中考数学三年真题模拟 卷(Ⅱ)(含答案及详解)
展开1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
①;②;③;④.
A.①②③B.①②④C.①③④D.②③④
2、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
A.10B.11C.12D.13
3、单项式的次数是( )
A.1B.2C.3D.4
4、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )
A.B.
C.D.
5、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为( )
A.1B.2C.D.
6、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )
A.1B.2020C.2021D.2022
7、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )
A.将沿轴翻折得到
B.将沿直线翻折,再向下平移个单位得到
C.将向下平移个单位,再沿直线翻折得到
D.将向下平移个单位,再沿直线翻折得到
8、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )
A.B.C.D.
9、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A.B.C.D.
10、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,则D的坐标为_______,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S四边形ABDC,则点P的坐标为_______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、如图,在平面直角坐标系xOy中,P为函数图象上一点,过点P分别作x轴、y轴的垂线,垂足分别为M,N.若矩形PMON的面积为3,则m的值为______.
3、与是同类项.则常数n的值为________.
4、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.
5、在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是________.(写一个条件即可)
三、解答题(5小题,每小题10分,共计50分)
1、计算:
(1);
(2).
2、已知,如图,,C为上一点,与相交于点F,连接.,.
(1)求证:;
(2)已知,,,求的长度.
3、如图,ABCD,,,试说明:BCDE.请补充说明过程,并在括号内填上相应的理由.
解:∵ABCD(已知),
,
又(已知),
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
BCDE .
4、如图,在中,,于点,为边上一点,连接与交于点.为外一点,满足,,连接.
(1)求证:;
(2)求证:.
5、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题:
(1)本次调查共抽取了多少名学生?
(2)①请补全条形统计图;
②求出扇形统计图中表示“及格”的扇形的圆心角度数.
(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?
-参考答案-
一、单选题
1、B
【分析】
根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
【详解】
解:∵四边形ABCD是正方形,
∴,,
在与中,
,
∴,
∴,①正确;
∵,
,
∴,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,②正确;
∵GF与BG的数量关系不清楚,
∴无法得AG与GE的数量关系,③错误;
∵,
∴,
∴,
即,④正确;
综上可得:①②④正确,
故选:B.
【点睛】
题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
2、A
【分析】
作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
【详解】
解:如图,作正多边形的外接圆,连接AO,BO,
∴∠AOB=2∠ADB=36°,
∴这个正多边形的边数为=10.
故选:A.
【点睛】
此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
3、C
【分析】
单项式中所有字母的指数和是单项式的次数,根据概念直接作答即可.
【详解】
解:单项式的次数是3,
故选C
【点睛】
本题考查的是单项式的次数的含义,掌握“单项式中所有字母的指数和是单项式的次数”是解本题的关键.
4、D
【分析】
分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
【详解】
解:∵,,,
∴BC=,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
过CA点作CH⊥AB于H,
∴∠ADE=∠ACB=90°,
∵,
∴CH=4.8,
∴AH=,
当0≤x≤6.4时,如图1,
∵∠A=∠A,∠ADE=∠ACB=90°,
∴△ADE∽△ACB,
∴,即,解得:x=,
∴y=•x•=x2;
当6.4<x≤10时,如图2,
∵∠B=∠B,∠BDE=∠ACB=90°,
∴△BDE∽△BCA,
∴,
即,解得:x=,
∴y=•x•=;
故选:D.
【点睛】
本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
5、C
【分析】
取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.
【详解】
解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,
∵点A(1,0),B (3,0),
∴OA=1,OB=3,
∴OE=2,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴ED=2×=,
∵∠ACB=90°,
∴点C在以AB为直径的圆上,
∴线段CD长的最小值为−1.
故选:C.
【点睛】
本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.
6、D
【分析】
根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.
【详解】
解:如图,
由题意得:SA=1,
由勾股定理得:SB+SC=1,
则 “生长”了1次后形成的图形中所有的正方形的面积和为2,
同理可得:
“生长”了2次后形成的图形中所有的正方形面积和为3,
“生长”了3次后形成的图形中所有正方形的面积和为4,
……
“生长”了2021次后形成的图形中所有的正方形的面积和是2022,
故选:D
【点睛】
本题考查了勾股数规律问题,找到规律是解题的关键.
7、C
【分析】
根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.
【详解】
解:A、根据图象可得:将沿x轴翻折得到,作图正确;
B、作图过程如图所示,作图正确;
C、如下图所示为作图过程,作图错误;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
D、如图所示为作图过程,作图正确;
故选:C.
【点睛】
题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.
8、A
【分析】
根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.
【详解】
解:B是俯视图,C是左视图,D是主视图,
故四个平面图形中A不是这个几何体的三视图.
故选:A.
【点睛】
本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.
9、B
【分析】
根据三角形的中线的定义判断即可.
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
故选:B.
【点睛】
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
10、D
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
二、填空题
1、 (4,2) (0,4)或(0,-4)
【解析】
【分析】
根据B点的平移方式即可得到D点的坐标;设点P到AB的距离为h,则S△PAB=×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标;
【详解】
解:由题意得点D是点B(3,0)先向上平移2个单位,再向右平移1个单位的对应点,
∴点D的坐标为(4,2);
同理可得点C的坐标为(0,2),
∴OC=2,
∵A(-1,0),B(3,0),
∴AB=4,
∴,
设点P到AB的距离为h,
∴S△PAB=×AB×h=2h,
∵S△PAB=S四边形ABDC,
得2h=8,解得h=4,
∵P在y轴上,
∴OP=4,
∴P(0,4)或(0,-4).
故答案为:(4,2);(0,4)或(0,-4).
【点睛】
本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
2、3
【解析】
【分析】
根据反比例函数的解析式是,设点,根据已知得出,即,求出即可.
【详解】
解:设反比例函数的解析式是,
设点是反比例函数图象上一点,
矩形的面积为3,
,
即,
故答案为:3.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了矩形的面积和反比例函数的有关内容的应用,解题的关键是主要考查学生的理解能力和运用知识点解题的能力.
3、
【解析】
【分析】
所含字母相同,相同字母的指数也相同的单项式是同类项,根据同类项的概念可得答案.
【详解】
解: 与是同类项,
故答案为:
【点睛】
本题考查的是同类项的概念,掌握“利用同类项的概念求解字母指数的值”是解本题的关键.
4、49
【解析】
【分析】
延长FE交AB于点M,则,,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.
【详解】
如图,延长FE交AB于点M,则,,
∵四边形ABCD是正方形,
∴,
∴是等腰直角三角形,
∴,
在中,,
∴,
∴.
故答案为:49.
【点睛】
本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.
5、∠ABT=∠ATB=45°(答案不唯一)
【解析】
【分析】
根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.
【详解】
解:添加条件:∠ABT=∠ATB=45°,
∵∠ABT=∠ATB=45°,
∴∠BAT=90°,
又∵AB是圆O的直径,
∴AT是圆O的切线,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:∠ABT=∠ATB=45°(答案不唯一).
【点睛】
本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.
三、解答题
1、
(1)
(2)-3
【分析】
(1)直接利用乘法分配律计算得出答案;
(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.
(1)
原式==-12-+14=;
(2)
原式=-4-3÷(-3)=-4+1=-3.
【点睛】
本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
2、(1)证明见解析;(2)
【分析】
(1)先证明再结合证明 从而可得结论;
(2)先证明 再证明 从而利用等面积法可得的长度.
【详解】
解:(1) ,
而
(2) ,,,
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查的是三角形的外角的性质,平行线的性质与判定,勾股定理的逆定理的应用,证明是解本题的关键.
3、两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行
【分析】
由题意根据平行线的性质与判定即可补充说理过程.
【详解】
解:(已知),
(两直线平行,内错角相等),
又(已知),
(等量代换),
(已知),
,
(同旁内角互补,两直线平行).
故答案为:两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行.
【点睛】
本题考查平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.
4、
(1)见解析
(2)见解析
【分析】
(1)如图,先证明,再根据全等三角形的判定证明结论即可;
(2)根据全等三角形的性质和等腰三角形的三线合一证明,再根据全等三角形的判定与性质证明即可.
(1)
证明:(1)证明:∵,
∴,
即,
在和中,
∵,
∴;
(2)
证明:∵,
∴,,
∵,于点,
∴.
∵,
∴,
在和中,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵,
∴,
∴,
∴.
【点睛】
本题考查全等三角形的判定与性质、等腰三角形的性质,熟练掌握全等三角形的判定与性质是解答的关键.
5、
(1)100名
(2)①见解析;②
(3)1440名
【分析】
(1)用不及格的人数除以不及格的人数占比即可得到总人数;
(2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案;
(3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可.
(1)
解:由题意得抽取的学生人数为:(名);
(2)
解:①由题意得:良好的人数为:(名),
∴优秀的人数为:(名),
∴补全统计图如下所示:
②由题意得:扇形统计图中表示“及格”的扇形的圆心角度数=;
(3)
解:由题意得:估计这次竞赛成绩为“优秀”和“良好”等级的学生共有(名).
【点睛】
本题主要考查了条形统计图与扇形统计图信息相关联,画条形统计图,求扇形统计图某一项的圆心角度数,用样本估计总体等等,正确读懂统计图是解题的关键.
模拟真题湖南省中考数学真题汇总 卷(Ⅱ)(含详解): 这是一份模拟真题湖南省中考数学真题汇总 卷(Ⅱ)(含详解),共29页。试卷主要包含了如图个三角形.,下列等式变形中,不正确的是等内容,欢迎下载使用。
模拟真题湖南省中考数学三年高频真题汇总 卷(Ⅲ)(含答案详解): 这是一份模拟真题湖南省中考数学三年高频真题汇总 卷(Ⅲ)(含答案详解),共26页。试卷主要包含了已知,则的补角等于,如图,A,下列图标中,轴对称图形的是等内容,欢迎下载使用。
模拟真题湖南省怀化市中考数学真题模拟测评 (A)卷(含答案详解): 这是一份模拟真题湖南省怀化市中考数学真题模拟测评 (A)卷(含答案详解),共29页。试卷主要包含了如图,某汽车离开某城市的距离y,下列方程中,解为的方程是等内容,欢迎下载使用。