中考数学贵州省安顺市中考数学历年高频真题专项攻克 B卷(含详解)
展开
这是一份中考数学贵州省安顺市中考数学历年高频真题专项攻克 B卷(含详解),共26页。试卷主要包含了如图,,如图,某汽车离开某城市的距离y等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、春节假期期间某一天早晨的气温是,中午上升了,则中午的气温是( )
A.B.C.D.
2、下列图像中表示是的函数的有几个( )
A.1个B.2个C.3个D.4个
3、在如图所示的几何体中,从不同方向看得到的平面图形中有长方形的是( )
A.①B.②C.①②D.①②③
4、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
A.B.C.D.
5、下面四个立体图形的展开图中,是圆锥展开图的是( ).
A.B.C.D.
6、如图,、是的切线,、是切点,点在上,且,则等于( )
A.54°B.58°C.64°D.68°
7、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为( )
A.1B.2C.D.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
8、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
A.75°B.70°C.65°D.55°
9、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
A.30km/hB.60km/hC.70km/hD.90km/h
10、2021年10月16日,中国神舟十三号载人飞船的长征二号F遥十三运载火箭在中国酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭成功分离,进入预定轨道,截至2021年11月2日,“神舟十三号”载人飞船已在轨飞行18天,距离地球约63800000千米,用科学记数法表示63800000为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某校六年级两个班共有78人,若从一班调3人到二班,那么两班人数正好相等.一班原有人数是__人.
2、当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图1可得等式:.
(1)由图2可得等式:________;
(2)利用(1)中所得到的结论,解决下面的问题:已知且,则_______.
3、已知(n为正整数)满足:,则__________.
4、如图,围棋盘的方格内,白棋②的位置是,白棋④的位置是,那么黑棋①的位置应该表示为______.
5、2020年10月,华为推出了高端手机,它搭载的麒麟9900芯片是全球第一颗,也是唯一一颗采用5纳米工艺制造的,集成了153亿个晶体管,比苹果的芯片多了,是· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
目前世界上晶体管最多、功能最完整的.其中“153亿”这个数据用科学记数法可以表示为__.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知直线,,平分.
(1)求证:;
(2)若比的2倍少3度,求的度数.
2、定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.
(1)如图1,在平面直角坐标系中,的半径为2,下列函数图象中与互为“双联图形”的是________(只需填写序号);
①直线;②双曲线;③抛物线.
(2)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;
(3)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.
3、数学课上,王老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.
(1)请用两种不同的方法求图2大正方形的面积:
方法1: ;
方法2: ;
(2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系 ;
(3)根据(2)题中的等量关系,解决如下问题:
①已知:a+b=5,(a﹣b)2=13,求ab的值;
②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.
4、计算:.
5、如图,在中,,将绕点C旋转得到,连接AD.
(1)如图1,点E恰好落在线段AB上.
①求证:;
②猜想和的关系,并说明理由;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)如图2,在旋转过程中,射线BE交线段AC于点F,若,,求CF的长.
-参考答案-
一、单选题
1、B
【分析】
根据题意可知,中午的气温是,然后计算即可.
【详解】
解:由题意可得,
中午的气温是:°C,
故选:.
【点睛】
本题考查有理数的加法,解答本题的关键是明确有理数加法的计算方法.
2、A
【分析】
函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
【详解】
解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
故第2个图符合题意,其它均不符合,
故选:A.
【点睛】
本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
3、C
【分析】
分别找出每个图形从三个方向看所得到的图形即可得到答案.
【详解】
①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,符合要求;
②圆柱从左面和正面看都是长方形,从上边看是圆,符合要求;
③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,不符合要求;故选:C.
【点睛】
本题考查了从不同方向看几何体,掌握定义是关键.注意正方形是特殊的长方形.
4、B
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
5、B
【分析】
由棱柱,圆锥,圆柱的展开图的特点,特别是底面与侧面的特点,逐一分析即可.
【详解】
解:选项A是四棱柱的展开图,故A不符合题意;
选项B是圆锥的展开图,故B符合题意;
选项C是三棱柱的展开图,故C不符合题意;
选项D是圆柱的展开图,故D不符合题意;
故选B
【点睛】
本题考查的是简单立体图形的展开图,熟悉常见的基本的立体图形及其展开图是解本题的关键.
6、C
【分析】
连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
【详解】
解:连接,,如下图:
∴
∵PA、PB是的切线,A、B是切点
∴
∴由四边形的内角和可得:
故选C.
【点睛】
此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
7、C
【分析】
取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.
【详解】
解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵点A(1,0),B (3,0),
∴OA=1,OB=3,
∴OE=2,
∴ED=2×=,
∵∠ACB=90°,
∴点C在以AB为直径的圆上,
∴线段CD长的最小值为−1.
故选:C.
【点睛】
本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.
8、B
【分析】
直接根据圆周角定理求解.
【详解】
解:,
.
故选:B.
【点睛】
本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
9、B
【分析】
直接观察图象可得出结果.
【详解】
解:根据函数图象可知:t=1时,y=90;
∵汽车是从距离某城市30km开始行驶的,
∴该汽车行驶的速度为90-30=60km/h,
故选:B.
【点睛】
本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
10、B
【分析】
科学记数法的表示形式为的形式,其中,n为整数;确定n的值时,要把原数变成a,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数的绝对值大于10时,n为正整数,当原数的绝对值小于1时,n为负整数.
【详解】
故选:B
【点睛】
本题考查了科学记数法的表示方法;科学记数法的表示形式为的形式,其中,n为整· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
数,熟练地掌握科学记数法的表示方法是解本题的关键.
二、填空题
1、42
【解析】
【分析】
设一班原有人数是人,则二班原有人数是人,根据从一班调3人到二班,那么两班人数正好相等,列方程求解.
【详解】
解答:解:设一班原有人数是人,则二班原有人数是人,依题意有:
,
解得.
故一班原有人数是42人.
故答案为:42.
【点睛】
本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.
2、 2
【解析】
【分析】
(1)方法一:直接利用正方形的面积公式可求出图形的面积;方法二:利用图形的面积等于9部分的面积之和,根据方法一和方法二的结果相等建立等式即可得;
(2)先将已知等式利用完全平方公式、整式的乘法法则变形为,再利用(1)的结论可得,从而可得,由此即可得出答案.
【详解】
解:(1)方法一:图形的面积为,
方法二:图形的面积为,
则由图2可得等式为,
故答案为:;
(2),
,
,
利用(1)的结论得:,
,
,即,
,
,
故答案为:2.
【点睛】
本题考查了完全平方公式与图形面积、整式乘法的应用,熟练掌握完全平方公式和整式的运算法则是解题关键.
3、
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【解析】
【分析】
由 ,再依次计算 从而可得答案.
【详解】
解: ,
故答案为:
【点睛】
本题考查的是已知字母的值,求解代数式的值,理解运算法则的含义并进行计算是解本题的关键.
4、
【解析】
【分析】
先根据白棋②的位置是,白棋④的位置是确定坐标系,然后再确定黑棋①的坐标即可.
【详解】
根据图形可以知道,黑棋①的位置应该表示为
故答案为:
【点睛】
此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.
5、
【解析】
【分析】
科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.
【详解】
153亿.
故答案为:.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.
三、解答题
1、
(1)见解析
(2)
【分析】
(1)根据平行线的性质,角平分线的定义,直角三角形的两锐角互余可得,,,进而即可得,即;
(2)根据题意,由(1)的角度之间关系可得,结合已知条件建立二元一次方程组,解方程组即可求解.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
如图,
平分
,
即
(2)
如图,
由比的2倍少3度,
即①
,又
即②
解得
【点睛】
本题考查了平行线的性质,直角三角形的两锐角互余,二元一次方程组,数形结合是解题的关键.
2、
(1)①
(2)的取值范围是
(3)或
【分析】
(1)根据图形M与图形N是双联图形的定义可直接判断即可;
(2)根据函数解析式联立方程,再根据“双联图形”的定义,由一元二次方程的判别式可得结论;
(3)根据双联图形的宝座进行判断即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
选项①的直线经过第一、二、三象限,且经过点(0,1)和(-1,0)
又的半径为2,
∴这两个图形有且只有两个公共点,
∴这两个图形是“双联图形”;
选项②的双曲线在第一、三象限与图1中的图象分别有两个公共点,一共有四个公共点,不符合“双联图形”的定义,
故这两个图形不是“双联图形”;
选项③的抛物线的顶点坐标渐(-1,2),并且开口方向向上,与图1中的图象没有公共点,
故这两个图形不是“双联图形”;
∴选①
故答案为①;
(2)
已知直线与抛物线有且只有两个公共点,
∴将代入抛物线中,得,
配方得,
∵方程有实数解,
∴即
又直线不是双曲线的“双联图形”,
∴直线与双曲线最多有一个公共点,
即当时,代入得,,即,
∴实数的取值范围是;
(3)
∵是二次函数,
∴
∵二次函数的顶点坐标为(-1,3),且对称轴为直线x=-1,
∴当时,二次函数的图象与的图象没有交点,
∴不成立;
当时,二次函数的图象开口向下,为使它与互为双联图形,即有且只有两个公共点,
∴①当抛物线与AC和AB相交时,设直线BC的解析式为y=mx+n,
把C(1,4),B(4,0)代入,得
,
∴,
∴y=-x+4,
∵抛物线与BC不想交,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,即ax2+(2a+1)x+a-1=0无实数根,
∴(2a+1)2-4a(a-1)
相关试卷
这是一份【真题汇总卷】贵州省中考数学历年高频真题专项攻克 B卷(含详解),共30页。试卷主要包含了代数式的意义是,下列现象等内容,欢迎下载使用。
这是一份【真题汇总卷】贵州省中考数学历年高频真题专项攻克 B卷(含答案详解),共25页。试卷主要包含了一元二次方程的根为,如图,下列条件中不能判定的是,已知,则的补角等于等内容,欢迎下载使用。
这是一份贵州省兴仁市中考数学历年高频真题专项攻克 B卷(含答案及详解),共26页。试卷主要包含了单项式的次数是等内容,欢迎下载使用。