中考数学湖南省长沙市中考数学模拟真题测评 A卷(含答案及解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列图标中,轴对称图形的是( )
A.B.C.D.
2、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A.B.C.D.
3、有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是( )
A.|a|>|b|B.a+b<0C.a﹣b<0D.ab>0
4、下列式子中,与是同类项的是( )
A.abB.C.D.
5、已知单项式5xayb+2的次数是3次,则a+b的值是( )
A.1B.3C.4D.0
6、下列不等式中,是一元一次不等式的是( )
A.B.C.D.
7、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
A.B.C.D.
8、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.2个B.3个C.4个D.5个
9、下面的图形中,是轴对称图形但不是中心对称图形的是( )
A.B.C.D.
10、下列图形是全等图形的是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,则D的坐标为_______,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S四边形ABDC,则点P的坐标为_______.
2、如图所示,已知直线,且这两条平行线间的距离为5个单位长度,点为直线上一定点,以为圆心、大于5个单位长度为半径画弧,交直线于、两点.再分别以点、为圆心、大于长为半径画弧,两弧交于点,作直线,交直线于点.点为射线上一动点,作点关于直线的对称点,当点到直线的距离为4个单位时,线段的长度为______.
3、比较大小[(﹣2)3]2___(﹣22)3.(填“>”,“<”或“=”)
4、计算:______.
5、不等式的解集是__.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知中,,射线CD交AB于点D,点E是CD上一点,且,联结BE.
(1)求证:
(2)如果CD平分,求证:.
2、如图,在中,,,,动点从点开始沿边向点以的速度移动,动点从点开始沿边向点以的速度移动.若,两点同时出发,当点到达点时,,两点同时停止移动.设点,移动时间为.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)若的面积为,写出关于的函数关系式,并求出面积的最大值;
(2)若,求的值.
3、已知:如图,在中,,,垂足为点D,E为边AC上一点,联结BE交CD于点F,并满足.求证:
(1);
(2)过点C作,交BE于点G,交AB于点M,求证:.
4、将两块完全相同的且含角的直角三角板和按如图所示位置放置,现将绕A点按逆时针方向旋转.如图,与交于点M,与交于点N,与交于点P.
(1)在旋转过程中,连接,求证:所在的直线是线段的垂直平分线.
(2)在旋转过程中,是否能成为直角三角形?若能,直接写出旋转角的度数;若不能,说明理由.
5、如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE(AC﹣AB).
-参考答案-
一、单选题
1、A
【详解】
解:A、是轴对称图形,故本选项符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、不是轴对称图形,故本选项不符合题意;
D、不是轴对称图形,故本选项不符合题意;
故选:A
【点睛】
本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
2、B
【分析】
根据三角形的中线的定义判断即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
故选:B.
【点睛】
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
3、C
【分析】
先根据数轴上点的位置,判断数a、b的正负和它们绝对值的大小,再根据加减法、乘法法则确定正确选项.
【详解】
解:由数轴知:﹣1<a<0<1<b,|a|<|b|,
∴选项A不正确;
a+b>0,选项B不正确;
∵a<0,b>0,
∴ab<0,选项D不正确;
∵a<b,
∴a﹣b<0,选项C正确,
故选:C.
【点睛】
本题考查了数轴上点的位置、有理数的加减法、乘法法则.理解加减法法则和乘法的符号法则是解决本题的关键.
4、D
【分析】
根据同类项是字母相同,相同字母的指数也相同的两个单项式进行解答即可.
【详解】
解:A、ab与ab2不是同类项,不符合题意;
B、a2b与ab2不是同类项,不符合题意;
C、ab2c与ab2不是同类项,不符合题意;
D、-2ab2与ab2是同类项,符合题意;
故选:D.
【点睛】
本题考查同类项,理解同类项的概念是解答的关键.
5、A
【分析】
根据单项式的次数的概念求解.
【详解】
解:由题意得:a+b+2=3,
∴a+b=1.
故选:A.
【点睛】
本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.
6、B
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.
【详解】
A、不等式中含有两个未知数,不符合题意;
B、符合一元一次不等式的定义,故符合题意;
C、没有未知数,不符合题意;
D、未知数的最高次数是2,不是1,故不符合题意.
故选:B
【点睛】
本题考查一元一次不等式的定义,掌握其定义是解决此题关键.
7、D
【分析】
设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
【详解】
解:设半径为r,如解图,过点O作,
∵OB=OE,
∴,
∵四边形ABCD为矩形,
∴∠C=90°=∠OFB,∠OBF=∠DBC,
∴.
∴,
∵,
∴,
∴,
∴,
∴.
在中,,即,
又∵为的切线,
∴,
∴,
解得或0(不合题意舍去).
故选D.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
8、C
【分析】
根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.
【详解】
∵抛物线开口向上,
∴a>0,
∵抛物线与y轴的交点在y轴的负半轴上,
∴c<0,
∵抛物线的对称轴在y轴的右边,
∴b<0,
∴,
故①正确;
∵二次函数的图像与x轴交于点,
∴a-b+c=0,
根据对称轴的左侧,y随x的增大而减小,
当x=-2时,y>0即,
故②正确;
∵,
∴b= -2a,
∴3a+c=0,
∴2a+c=2a-3a= -a<0,
故③正确;
根据题意,得,
∴,
解得,
故④错误;
∵=0,
∴,
∴y=向上平移1个单位,得y=+1,
∴为方程的两个根,且且.
故⑤正确;
故选C.
【点睛】
本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
9、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;
B、不是轴对称图形,是中心对称图形,故此选项不符合题意;
C、不是轴对称图形,是中心对称图形,故此选项不符合题意;
D、是轴对称图形,不是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
10、D
【详解】
解:A、不是全等图形,故本选项不符合题意;
B、不是全等图形,故本选项不符合题意;
C、不是全等图形,故本选项不符合题意;
D、全等图形,故本选项符合题意;
故选:D
【点睛】
本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.
二、填空题
1、 (4,2) (0,4)或(0,-4)
【解析】
【分析】
根据B点的平移方式即可得到D点的坐标;设点P到AB的距离为h,则S△PAB=×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标;
【详解】
解:由题意得点D是点B(3,0)先向上平移2个单位,再向右平移1个单位的对应点,
∴点D的坐标为(4,2);
同理可得点C的坐标为(0,2),
∴OC=2,
∵A(-1,0),B(3,0),
∴AB=4,
∴,
设点P到AB的距离为h,
∴S△PAB=×AB×h=2h,
∵S△PAB=S四边形ABDC,
得2h=8,解得h=4,
∵P在y轴上,
∴OP=4,
∴P(0,4)或(0,-4).
故答案为:(4,2);(0,4)或(0,-4).
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
2、或
【解析】
【分析】
根据勾股定理求出PE=3,设OH=x,可知,DH=(x-3)或(3- x),勾股定理列出方程,求出x值即可.
【详解】
解:如图所示,过点作直线的垂线,交m、n于点D、E,连接,
由作图可知,,,点到直线的距离为4个单位,即,
,
则,,
设OH=x,可知,DH=(3- x),
解得,,
;
如图所示,过点作直线的垂线,交m、n于点D、E,连接,
由作图可知,,,点到直线的距离为4个单位,即,
,
则,,
设OH=x,可知,DH=(x-3),
解得,,
;
故答案为:或
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了勾股定理和轴对称,解题关键是画出正确图形,会分类讨论,设未知数,根据勾股定理列方程.
3、>
【解析】
【分析】
利用幂的乘方和积的乘方先计算[(-2)3]2与(-22)3,再比较大小得结论.
【详解】
解:∵[(-2)3]2=(-2)3×2=(-2)6=26,
(-22)3=-26,
又∵26>-26,
∴[(-2)3]2>(-22)3.
故答案为:>.
【点睛】
本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方法则是解决本题的关键.
4、-1
【解析】
【分析】
根据有理数减法法则计算即可.
【详解】
解:,
故答案为:-1.
【点睛】
本题考查了有理数减法,解题关键是熟记有理数减法法则,准确计算.
5、##
【解析】
【分析】
移项合并化系数为1即可.
【详解】
.
移项合并同类项,得:.
化系数为.
故答案为:.
【点睛】
本题考查一次不等式的解法,掌握一般步骤是关键,属于基础题.
三、解答题
1、
(1)见解析;
(2)见解析
【分析】
(1)先根据相似三角形的判定证明△ADE∽△CDB,则可证得即,再根据相似三角形的判定即可证得结论;
(2)根据角平分线定义和相似三角形的性质证明∠DCB=∠EAB=∠EBA=45°,则△AEB为等腰直角三角形,根据勾股定理可得AB2=2BE2,再根据相似三角形的判定证明△EBD∽△ECB即可证得结论.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
证明:∵,∠ADE=∠CDB,
∴△ADE∽△CDB,
∴即,又∠ADC=∠EDB,
∴;
(2)
证明:∵CD平分,∠ACB=90°,
∴∠ACD=∠DCB=45°,
∵△ADE∽△CDB,,
∴∠DCB=∠EAD=∠EBD=45°,
∴AE=BE,∠AEB=90°,
∴△AEB为等腰直角三角形,
∴AB2=AE2+BE2=2BE2,
∵∠DCB =∠EBD,∠CEB =∠BED,
∴△CEB∽△BED,
∴即,
∴AB2=2BE2=2ED·EC.
【点睛】
本题主要考查相似三角形的判定与性质、角平分线的定义、三角形内角和定理、等腰直角三角形的判定、勾股定理,熟练掌握相似三角形的判定与性质是解答的关键.
2、
(1)面积的最大值为
(2)
【分析】
(1)动点从点A开始沿边向点以的速度移动,动点从点开始沿边向点C以的速度移动,所以,.从而,求二次函数最大值即可;
(2)先证,得,从而,即可得解.
(1)
解:由题意可知,,.
∴;
∵,
∴当时,.
∴面积的最大值为;
(2)
解:∵,,
∴.
∴.
即,
解得.
故t的值为.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题结合三角形面积公式考查了求二次函数的解析式及最值问题,结合相似三角形的判定和性质考查了路程问题,解决此类问题的关键是正确表示两动点的路程(路程=时间×速度);这类动点型问题一般情况都是求三角形面积或四边形面积的最值问题,转化为函数求最值问题,直接利用面积公式或求和、求差表示面积的方法求出函数的解析式,再根据函数图象确定最值,要注意时间的取值范围.
3、
(1)见解析
(2)见解析
【分析】
(1)由可得可得,然后再说明,即可证明结论;
(2)说明即可证明结论.
(1)
证明:∵
∴
∵,
∴∠BDC=
∴
∵,
∴∠A+∠ABC=90°,∠DCB+∠ABC=90°,
∴∠A=∠DCB
∵∠CBD=∠CBD
∴
∴.
(2)
解:∵
∴∠A=∠CBE
∵
∴∠DCB=∠CBE
∵∠AEB=∠CBE+∠BCE,∠CFM=∠CDA+∠FMD
∴∠AEB=∠CFM
∵CG⊥BE,CD⊥AB,∠CFD=∠DFB
∴∠MCF=∠FBD
∴
∴.
【点睛】
本题主要考查了相似三角形的判定与性质,灵活运用相似三角形的判定定理成为解答本题的关键.
4、
(1)见解析;
(2)能成为直角三角形,=30°或60°
【分析】
(1)由全等三角形的性质可得∠AEF=∠ACB,AE=AC,根据等腰三角形的判定与性质证明· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∠PEC=∠PCE,PE=PC,然后根据线段垂直平分线的判定定理即可证得结论;
(2)分∠CPN=90°和∠CNP=90°,利用旋转的性质和三角形的内角和定理求解即可.
(1)
证明:∵两块是完全相同的且含角的直角三角板和,
∴AE=AC,∠AEF=∠ACB=30°,∠F=60°,
∴∠AEC=∠ACE,
∴∠AEC-∠AEF=∠ACE-∠ACB,
∴∠PEC=∠PCE,
∴PE=PC,又AE=AC,
∴所在的直线是线段的垂直平分线.
(2)
解:在旋转过程中,能成为直角三角形,
由旋转的性质得:∠FAC= ,
当∠CNP=90°时,∠FNA=90°,又∠F=60°,
∴=∠FAC=180°-∠FNA-∠F=180°-90°-60°=30°;
当∠CPN=90°时,∵∠NCP=30°,
∴∠PNC=180°-90°-30°=60°,即∠FNA=60°,
∵∠F=60°,
∴=∠FAC=180°-∠FNA-∠F=180°-60°-60°=60°,
综上,旋转角的的度数为30°或60°.
【点睛】
本题考查直角三角板的度数、全等三角形的性质、等腰三角形的判定与性质、线段垂直平分线的判定、旋转性质、对顶角相等、三角形的内角和定理,熟练掌握相关知识的联系与运用是解答的关键.
5、见解析
【分析】
根据全等三角形的判定与性质,可得∠ABF=∠AFB,AB=AF,BE=EF,根据三角形外角的性质,可得∠C+∠CBF=∠AFB=∠ABF,根据角的和差、等量代换,可得∠CBF=∠C,根据等腰三角形的判定,可得BF=CF,根据线段的和差、等式的性质,可得答案
【详解】
证明:如图:延长BE交AC于点F,
∵BF⊥AD,
∴∠AEB=∠AEF.
∵AD平分∠BAC
∴∠BAE=∠FAE
在△ABE和△AFE中,
∴△ABE≌△AFE (ASA)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠ABF=∠AFB, AB=AF, BE=EF
∵∠C+∠CBF=∠AFB=∠ABF
∴∠ABF+∠CBF=∠ABC=3∠C
∴∠C+2∠CBF=3∠C
∴∠CBF=∠C
∴BF=CF
∴BE=BF=CF
∵CF=AC-AF=AC-AB
∴BE= (AC-AB)
【点睛】
本题考查了等腰三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质,等量代换,等式的性质,利用等量代换得出∠CBF=∠C是解题关键
模拟真题湖南省中考数学模拟专项测评 A卷(含答案及解析): 这是一份模拟真题湖南省中考数学模拟专项测评 A卷(含答案及解析),共27页。试卷主要包含了如图,A,下列现象等内容,欢迎下载使用。
模拟真题湖南省怀化市中考数学模拟真题测评 A卷(含答案解析): 这是一份模拟真题湖南省怀化市中考数学模拟真题测评 A卷(含答案解析),共24页。试卷主要包含了如图,有三块菜地△ACD,有理数 m等内容,欢迎下载使用。
【真题汇总卷】湖南省长沙市中考数学模拟真题测评 A卷(精选): 这是一份【真题汇总卷】湖南省长沙市中考数学模拟真题测评 A卷(精选),共26页。试卷主要包含了下列式子中,与是同类项的是等内容,欢迎下载使用。