年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    中考专题湖南省株洲市中考数学模拟专项测试 B卷(含答案及详解)

    中考专题湖南省株洲市中考数学模拟专项测试 B卷(含答案及详解)第1页
    中考专题湖南省株洲市中考数学模拟专项测试 B卷(含答案及详解)第2页
    中考专题湖南省株洲市中考数学模拟专项测试 B卷(含答案及详解)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考专题湖南省株洲市中考数学模拟专项测试 B卷(含答案及详解)

    展开

    这是一份中考专题湖南省株洲市中考数学模拟专项测试 B卷(含答案及详解),共31页。试卷主要包含了如图个三角形.等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
    A.10B.11C.12D.13
    2、下列各式中,不是代数式的是( )
    A.5ab2B.2x+1=7C.0D.4a﹣b
    3、如图,下列条件中不能判定的是( )
    A.B.C.D.
    4、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
    A.B.y随x的增大而增大
    C.当时,D.关于x的方程的解是
    5、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    A.4米B.10米C.4米D.12米
    6、如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2),再分别连接图(2)中间的小三角形三边中点得到图(3),按这种方法继续下去,第6个图形有( )个三角形.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.20B.21C.22D.23
    7、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )
    A.将沿轴翻折得到
    B.将沿直线翻折,再向下平移个单位得到
    C.将向下平移个单位,再沿直线翻折得到
    D.将向下平移个单位,再沿直线翻折得到
    8、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
    A.75°B.70°C.65°D.55°
    9、下列几何体中,截面不可能是长方形的是( )
    A.长方体B.圆柱体
    C.球体D.三棱柱
    10、下列计算中,正确的是( )
    A.a2+a3=a5B.a•a=2aC.a•3a2=3a3D.2a3﹣a=2a2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在中,,,,以点A为圆心,的长为半径画弧,以点B为圆心,的长为半径画弧,两弧分别交于点D、F,则图中阴影部分的面积是_________.
    2、、、三个城市的位置如右图所示,城市在城市的南偏东60°方向,且,则城市在城市的______方向.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    3、已知抛物线与轴相交于,两点.若线段的长不小于2,则代数式的最小值为_______.
    4、如图中给出了某城市连续5天中,每一天的最高气温和最低气温(单位:),那么最大温差是________.
    5、在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是________.(写一个条件即可)
    三、解答题(5小题,每小题10分,共计50分)
    1、已知:如图,锐角∠AOB.
    求作:射线OP,使OP平分∠AOB.
    作法:
    ①在射线OB上任取一点M;
    ②以点M为圆心,MO的长为半径画圆,分别交射线OA,OB于C,D两点;
    ③分别以点C,D为圆心,大于的长为半径画弧,在∠AOB内部两弧交于点H;
    ④作射线MH,交⊙M于点P;
    ⑤作射线OP.
    射线OP即为所求.
    (1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
    (2)完成下面的证明.
    证明:连接CD.
    由作法可知MH垂直平分弦CD.
    ∴( )(填推理依据).
    ∴∠COP = .
    即射线OP平分∠AOB.
    2、如图, 已知在 Rt 中, , 点 为射线 上一动点, 且 , 点 关于直线 的对称点为点 , 射线 与射线 交于点 .
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)当点 在边 上时,
    ① 求证: ;
    ②延长 与边 的延长线相交于点 , 如果 与 相似,求线段 的长;
    (2)联结 , 如果 , 求 的值.
    3、解方程:
    (1);
    (2).
    4、如图,在等腰中,,点是边上的中点,过点作,交的延长线于点,过点作,交于点,交于点,交于点.
    求证:
    (1);
    (2).
    5、(1)探究:如图1,ABCDEF,试说明.
    (2)应用:如图2,ABCD,点在、之间,与交于点,与交于点.若,,则的大小是多少?
    (3)拓展:如图3,直线在直线、之间,且ABCDEF,点、分别在直线、上,点是直线上的一个动点,且不在直线上,连接、.若,则 度(请直接写出答案).
    -参考答案-
    一、单选题
    1、A
    【分析】
    作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
    【详解】
    解:如图,作正多边形的外接圆,连接AO,BO,
    ∴∠AOB=2∠ADB=36°,
    ∴这个正多边形的边数为=10.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故选:A.
    【点睛】
    此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
    2、B
    【分析】
    根据代数式的定义即可判定.
    【详解】
    A. 5ab2是代数式;
    B. 2x+1=7是方程,故错误;
    C. 0是代数式;
    D. 4a﹣b是代数式;
    故选B.
    【点睛】
    此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.
    3、A
    【分析】
    根据平行线的判定逐个判断即可.
    【详解】
    解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
    ∴∠3=∠5,
    因为”同旁内角互补,两直线平行“,
    所以本选项不能判断AB∥CD;
    B、∵∠3=∠4,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    C、∵,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    D、∵∠1=∠5,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    故选:A.
    【点睛】
    本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
    4、D
    【分析】
    根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.该一次函数经过一、二、四象限
    , y随x的增大而减小,
    故A,B不正确;
    C. 如图,设一次函数与轴交于点
    则当时,,故C不正确
    D. 将点坐标代入解析式,得
    关于x的方程的解是
    故D选项正确
    故选D
    【点睛】
    本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
    5、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为﹣4,
    ∵水面AB宽为20米,
    ∴A(﹣10,﹣4),B(10,﹣4),
    将A代入y=ax2,
    ﹣4=100a,
    ∴a=﹣,
    ∴y=﹣x2,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为﹣1,
    ∴﹣1=﹣x2,
    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
    6、B
    【分析】
    由第一个图中1个三角形,第二个图中5个三角形,第三个图中9个三角形,每次递增4个,即可得出第n个图形中有(4n-3)个三角形.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【详解】
    解:由图知,第一个图中1个三角形,即(4×1-3)个;
    第二个图中5个三角形,即(4×2-3)个;
    第三个图中9个三角形,即(4×3-3)个;

    ∴第n个图形中有(4n-3)个三角形.
    ∴第6个图形中有个三角形
    故选B
    【点睛】
    本题考查了图形变化的一般规律问题.能够通过观察,掌握其内在规律是解题的关键.
    7、C
    【分析】
    根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.
    【详解】
    解:A、根据图象可得:将沿x轴翻折得到,作图正确;
    B、作图过程如图所示,作图正确;
    C、如下图所示为作图过程,作图错误;
    D、如图所示为作图过程,作图正确;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故选:C.
    【点睛】
    题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.
    8、B
    【分析】
    直接根据圆周角定理求解.
    【详解】
    解:,

    故选:B.
    【点睛】
    本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    9、C
    【分析】
    根据长方体、圆柱体、球体、三棱柱的特征,找到用一个平面截一个几何体得到的形状不是长方形的几何体解答即可.
    【详解】
    解:长方体、圆柱体、三棱柱的截面都可能出现长方形,只有球体的截面只与圆有关,
    故选:C.
    【点睛】
    此题考查了截立体图形,正确掌握各几何体的特征是解题的关键.
    10、C
    【分析】
    根据整式的加减及幂的运算法则即可依次判断.
    【详解】
    A. a2+a3不能计算,故错误;
    B. a•a=a2,故错误;
    C. a•3a2=3a3,正确;
    D. 2a3﹣a=2a2不能计算,故错误;
    故选C.
    【点睛】
    此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则.
    二、填空题
    1、
    【解析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    根据直角三角形30度角的性质及勾股定理求出AC、BC,∠A=60°,利用扇形面积公式求出阴影面积.
    【详解】
    解:在中,,,,
    ∴AC=1,,∠A=60°,
    ∴图中阴影部分的面积=
    =
    =,
    故答案为:.
    【点睛】
    此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键.
    2、35°##35度
    【解析】
    【分析】
    根据方向角的表示方法可得答案.
    【详解】
    解:如图,

    ∵城市C在城市A的南偏东60°方向,
    ∴∠CAD=60°,
    ∴∠CAF=90°-60°=30°,
    ∵∠BAC=155°,
    ∴∠BAE=155°-90°-30°=35°,
    即城市B在城市A的北偏西35°,
    故答案为:35°.
    【点睛】
    本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
    3、-1
    【解析】
    【分析】
    将抛物线解析式配方,求出顶点坐标为(1,-2)在第四象限,再根据抛物线与x轴有两个交点可得,设为A,B两点的横坐标,然后根据已知,求出的取值范围,再设,配方代入求解即可.
    【详解】
    解:
    =
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    =
    ∴抛物线顶点坐标为(1,-2),在第四象限,
    又抛物线与轴相交于A,两点.
    ∴抛物线开口向上,即
    设为A,B两点的横坐标,

    ∵线段的长不小于2,





    解得,

    当时,有最小值,最小值为:
    故答案为:-1
    【点睛】
    本题主要考查发二次函数的图象与性质,熟记完全平方公式和根与系数的关系是解题的关键.
    4、15
    【解析】
    【分析】
    通过表格即可求得最高和最低气温,12月3日的温差最大,最大温差为10-(-5)=15℃;
    【详解】
    解:12月1日的温差:
    12月2日的温差:
    12月3日的温差:
    12月4日的温差:
    12月5日的温差:

    最大温差是15,
    故答案为:15.
    【点睛】
    此题考查了正数与负数以及有理数的减法,熟练掌握运算法则是解本题的关键.
    5、∠ABT=∠ATB=45°(答案不唯一)
    【解析】
    【分析】
    根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.
    【详解】
    解:添加条件:∠ABT=∠ATB=45°,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵∠ABT=∠ATB=45°,
    ∴∠BAT=90°,
    又∵AB是圆O的直径,
    ∴AT是圆O的切线,
    故答案为:∠ABT=∠ATB=45°(答案不唯一).
    【点睛】
    本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.
    三、解答题
    1、
    (1)见解析
    (2)垂径定理及推论;∠DOP
    【分析】
    (1)根据题干在作图方法依次完成作图即可;
    (2)由垂径定理先证明 再利用圆周角定理证明即可.
    (1)
    解:如图, 射线OP即为所求.
    (2)
    证明:连接CD.
    由作法可知MH垂直平分弦CD.
    ∴( 垂径定理 )(填推理依据).
    ∴∠COP =.
    即射线OP平分∠AOB.
    【点睛】
    本题考查的是平分线的作图,垂径定理的应用,圆周角定理的应用,熟练的运用垂径定理证明是解本题的关键.
    2、
    (1)①见解析;②
    (2)3或4
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)① 如图1,连接CE,DE,根据题意,得到CB=CE=CA,利用等腰三角形的底角与顶角的关系,三角形外角的性质,可以证明;
    ②连接BE,交CD于定Q,利用三角形外角的性质,确定△DCB∽△BGE,利用相似,证明△ABG是等腰三角形,△ABE是等腰三角形,△BEF是等腰直角三角形,用BE表示GE,后用相似三角形的性质求解即可;
    (2)分点D在AB上和在AB的延长上,两种情形,运用等腰三角形的性质,勾股定理分别计算即可.
    (1)
    ① 如图1,连接CE,DE,
    ∵点B关于直线CD的对称点为点E,
    ∴CE=CB,BD=DE,∠ECD=∠BCD,∠ACE=90°-2∠ECD,
    ∵AC=BC,
    ∴AC=EC,
    ∴∠AEC=∠ACE,
    ∵2∠AEC=180°-∠ACE=180°-90°+2∠ECD,
    ∴∠AEC=45°+∠ECD,
    ∵∠AEC=∠AFC +∠ECD,
    ∴∠AEC=45°+∠ECD=∠AFC +∠ECD,
    ∴∠AFC=45°;
    ②连接BE,交CD于定Q,
    根据①得∠EAB =∠DCB,∠AFC=45°,
    ∵点B关于直线CD的对称点为点E,
    ∴∠EFC=∠BFC=45°,CF⊥BE,
    ∴BF⊥AG,△BEF是等腰直角三角形, BF=EF,
    ∵∠BEG>∠EAB,与 相似,
    ∴△DCB∽△BGE,
    ∴∠EAB =∠DCB=∠BGE,∠DBC=∠BEG=45°,
    ∴AB=BG,∠EAB+∠EBA=∠EAB+∠BGE,
    ∴∠EAB=∠EBA=∠BGE,
    ∴AE=BE=BF=EF,
    ∵BF⊥AG,
    ∴AF=FG=AE+EF=BE+EF=BE+BE=BE,
    ∴GE=EF+FG=BE+BE= BE,
    ∴=,
    ∵△DCB∽△BGE,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴,
    ∴,
    ∴BD==,
    (2)
    过点C作CM⊥AE,垂足为M,
    根据①②知,△ACE是等腰三角形,△BEF是等腰直角三角形,
    ∴AM=ME,BF⊥AF,
    设AM=ME=x,CM=y,
    ∵AC=BC=5,∠ACB=90°,,
    ∴,AB=,xy=12,

    ==49,
    ∴x+y=7或x+y=-7(舍去);

    ==1,
    ∴x-y=1或x-y=-1;
    ∴或
    ∴或
    ∴或
    ∴AE=8或AE=6,
    当点D在AB上时,如图3所示,AE=6,
    设BF=EF=m,
    ∴,
    ∴,
    解得m=1,m=-7(舍去),
    ∴=3;
    当点D在AB的延长线上时,如图4所示,AE=8,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    设BF=EF=n,
    ∴,
    ∴,
    解得n=1,n=7(舍去),
    ∴=4;
    ∴或.
    【点睛】
    本题考查了轴对称的性质,等腰直角三角形的判定性质,等腰三角形的判定和性质,完全平方公式,勾股定理,三角形相似的判定和性质,一元二次方程的解法,分类思想,熟练掌握勾股定理,三角形的相似,一元二次方程的解法是解题的关键.
    3、
    (1)x=2;
    (2)x=-1
    【分析】
    (1)根据一元一次方程的解法解答即可;
    (2)根据一元一次方程的解法解答即可.
    (1)
    解:去括号,得:8-4x+12=6x,
    移项、合并同类项,得:-10x=-20,
    化系数为1,得:x=2;
    (2)
    解:去分母,得:3(2x+3)-(x-2)=6,
    去括号,得:6x+9-x+2=6,
    移项、合并同类项,得:5x=-5,
    化系数为1,得:x=-1;
    【点睛】
    本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
    4、
    (1)见解析
    (2)见解析
    【分析】
    (1)利用已知条件证明即可;
    (2)通过证明得出,再根据,得出结论.
    (1)
    证明:,,






    (2)
    证明,点是边上的中点,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ,,










    即.
    【点睛】
    本题考查了三角形相似的判定和性质以及直角三角形和等腰三角形的性质,解题的关键是掌握相似三角形的判定定理进行证明.
    5、(1)见解析;(2)60°;(3)70或290
    【分析】
    (1)由可得,,,则;
    (2)利用(1)中的结论可知,,则可得的度数为,由对顶角相等可得;
    (3)结合(1)中的结论可得,注意需要讨论是钝角或是锐角时两种情况.
    【详解】
    解:(1)如图1,,
    ,,


    (2)由(1)中探究可知,,
    ,且,


    (3)如图,当为钝角时,
    由(1)中结论可知,,

    当为锐角时,如图,
    由(1)中结论可知,,
    即,
    综上,或.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故答案为:70或290.
    【点睛】
    本题主要考查平行线的性质与判定,难度适中,观察图形,推出角之间的和差关系是解题关键.

    相关试卷

    中考专题湖南省株洲市中考数学模拟专项测试 B卷(含答案及解析):

    这是一份中考专题湖南省株洲市中考数学模拟专项测试 B卷(含答案及解析),共24页。试卷主要包含了和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。

    【真题汇总卷】湖南省株洲市中考数学模拟专项测评 A卷(含答案详解):

    这是一份【真题汇总卷】湖南省株洲市中考数学模拟专项测评 A卷(含答案详解),共28页。试卷主要包含了下列语句中,不正确的是,如图,A等内容,欢迎下载使用。

    【真题汇总卷】湖南省邵阳县中考数学模拟专项测试 B卷(含答案详解):

    这是一份【真题汇总卷】湖南省邵阳县中考数学模拟专项测试 B卷(含答案详解),共24页。试卷主要包含了不等式的最小整数解是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map