年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    中考专题湖南省张家界市中考数学历年真题练习 (B)卷(含详解)

    中考专题湖南省张家界市中考数学历年真题练习 (B)卷(含详解)第1页
    中考专题湖南省张家界市中考数学历年真题练习 (B)卷(含详解)第2页
    中考专题湖南省张家界市中考数学历年真题练习 (B)卷(含详解)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考专题湖南省张家界市中考数学历年真题练习 (B)卷(含详解)

    展开

    这是一份中考专题湖南省张家界市中考数学历年真题练习 (B)卷(含详解),共23页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、春节假期期间某一天早晨的气温是,中午上升了,则中午的气温是( )
    A.B.C.D.
    2、若把边长为的等边三角形按相似比进行缩小,得到的等边三角形的边长为( )
    A.B.C.D.
    3、整式的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:
    则关于x的方程的解为( )
    A.B.C.D.
    4、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
    A.75°B.70°C.65°D.55°
    5、如图是由一些完全相同的小立方块搭成的几何体从左面、上面看到的形状图.搭成这个几何体所用的小立方块的个数至少是( )
    A.3个B.4个C.5个D.6个
    6、下列运算正确的是( )
    A.B.C.D.
    7、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为( )
    A.1B.2C.D.
    8、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )
    A.1B.2020C.2021D.2022
    9、已知反比例函数经过平移后可以得到函数,关于新函数,下列结论正确的是( )
    A.当时,y随x的增大而增大B.该函数的图象与y轴有交点
    C.该函数图象与x轴的交点为(1,0)D.当时,y的取值范围是
    10、下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,AC为正方形ABCD的对角线,E为AC上一点,连接EB,ED,当时,的度数为______.
    2、如图,等边边长为4,点D、E、F分别是AB、BC、AC的中点,分别以D、E、F为圆心,DE长为半径画弧,围成一个曲边三角形,则曲边三角形的周长为______.
    3、如图是正方体的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,那么在正方体的表面与“!”相对的汉字是________.
    4、若,则的值是______.
    5、《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2 m记作,则下降3m记作______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,,于点,为边上一点,连接与交于点.为外一点,满足,,连接.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)求证:;
    (2)求证:.
    2、如图,直线AB、CD相交于点O,OE平分∠BOD,且.求∠AOC和∠DOE的度数.
    3、某演出票价为110元/人,若购买团体票有如下优惠:
    例如:200人作为一个团体购票,则需要支付票款元.甲、乙两个班全体学生准备去观看该演出,如果两个班作为一个团体去购票,则应付票款10065元.请列方程解决下列问题:
    (1)已知两个班总人数超过100人,求两个班总人数;
    (2)在(1)条件下,若甲班人数多于50人.乙班人数不足50人,但至少25人,如果两个班单独购票,一共应付票款11242元.求甲、乙两班分别有多少人?
    4、解方程:
    (1);
    (2).
    5、如图,在直角坐标系内,把y=x的图象向下平移1个单位得到直线AB,直线AB分别交x轴于点A,交y轴于点B,C为线段AB的中点,过点C作AB的垂线,交y轴于点D.
    (1)求A,B两点的坐标;
    (2)求BD的长;
    (3)直接写出所有满足条件的点E;点E在坐标轴上且△ABE为等腰三角形.
    -参考答案-
    一、单选题
    1、B
    【分析】
    根据题意可知,中午的气温是,然后计算即可.
    【详解】
    解:由题意可得,
    中午的气温是:°C,
    故选:.
    【点睛】
    本题考查有理数的加法,解答本题的关键是明确有理数加法的计算方法.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    2、A
    【分析】
    直接根据位似图形的性质求解即可
    【详解】
    解:∵把边长为的等边三角形按相似比进行缩小,
    ∴得到的新等边三角形的边长为:
    故选:A
    【点睛】
    本题主要考查了根据位似图形的性质求边长,熟练掌握位似图形的性质是解答本题的关键.
    3、A
    【分析】
    根据等式的性质把变形为;再根据表格中的数据求解即可.
    【详解】
    解:关于x的方程变形为,
    由表格中的数据可知,当时,;
    故选:A.
    【点睛】
    本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.
    4、B
    【分析】
    直接根据圆周角定理求解.
    【详解】
    解:,

    故选:B.
    【点睛】
    本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    5、C
    【分析】
    根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,从而得到上层至少1块,底层2行至少有3+1=4块,即可求解.
    【详解】
    解:根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,
    所以上层至少1块,底层2行至少有3+1=4块,
    所以搭成这个几何体所用的小立方块的个数至少是1+4=5块.
    故选:C
    【点睛】
    本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从左面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
    6、C
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    根据合并同类项法则解答即可.
    【详解】
    解:A、3x和4y不是同类项,不能合并,故A选项错误;
    B、,故B选项错误;
    C、,故C选项正确;
    D、,故D选项错误,
    故选:C.
    【点睛】
    本题考查合并同类项,熟练掌握合并同类项法则是解答的关键.
    7、C
    【分析】
    取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.
    【详解】
    解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,
    ∵点A(1,0),B (3,0),
    ∴OA=1,OB=3,
    ∴OE=2,
    ∴ED=2×=,
    ∵∠ACB=90°,
    ∴点C在以AB为直径的圆上,
    ∴线段CD长的最小值为−1.
    故选:C.
    【点睛】
    本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.
    8、D
    【分析】
    根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.
    【详解】
    解:如图,
    由题意得:SA=1,
    由勾股定理得:SB+SC=1,
    则 “生长”了1次后形成的图形中所有的正方形的面积和为2,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    同理可得:
    “生长”了2次后形成的图形中所有的正方形面积和为3,
    “生长”了3次后形成的图形中所有正方形的面积和为4,
    ……
    “生长”了2021次后形成的图形中所有的正方形的面积和是2022,
    故选:D
    【点睛】
    本题考查了勾股数规律问题,找到规律是解题的关键.
    9、C
    【分析】
    函数的图象是由函数的图象向下平移1个单位长度后得到的,根据两个函数的图像,可排除A,B,C选项,将y=0代入函数可得到函数与x轴交点坐标为(1,0),故C选项正确.
    【详解】
    解:函数与函数的图象如下图所示:
    函数的图象是由函数的图象向下平移1个单位长度后得到的,
    A、由图象可知函数,当时,y随x的增大而减小,选项说法错误,与题意不符;
    B、函数的图象是由函数的图象向下平移一个单位后得到的,所以函数与y轴无交点,选项说法错误,与题意不符;
    C、将y=0代入函数中得,,解得,故函数与x轴交点坐标为(1,0),选项说法正确,与题意相符;
    D、当时, ,有图像可知当时,y的取值范围是,故选项说法错误,与题意不符;
    故选:C.
    【点睛】
    本题考查反比例函数的图象,以及函数图象的平移,函数与数轴的交点求法,能够画出图象,并掌握数形结合的方法是解决本题的关键.
    10、C
    【分析】
    根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.
    【详解】
    解:
    A、不是中心对称图形,是轴对称图形,故此选项错误;
    B、是中心对称图形,不是轴对称图形,故此选项错误;
    C、是中心对称图形,也是轴对称图形,故此选项正确;
    D、不是中心对称图形,是轴对称图形,故此选项错误;
    故选:C.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    二、填空题
    1、18°##18度
    【解析】
    【分析】
    由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=∠BED=63°,由三角形的外角的性质可求解.
    【详解】
    证明:∵四边形ABCD是正方形,
    ∴AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,
    在△DCE和△BCE中,

    ∴△DCE≌△BCE(SAS),
    ∴∠CED=∠CEB=∠BED=63°,
    ∵∠CED=∠CAD+∠ADE,
    ∴∠ADE=63°-45°=18°,
    故答案为:18°.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE≌△BCE是本题的关键.
    2、
    【解析】
    【分析】
    证明△DEF是等边三角形,求出圆心角的度数,利用弧长公式计算即可.
    【详解】
    解:连接EF、DF、DE,
    ∵等边边长为4,点D、E、F分别是AB、BC、AC的中点,
    ∴是等边三角形,边长为2,
    ∴∠EDF=60°,
    弧EF的长度为,同理可求弧DF、DE的长度为,
    则曲边三角形的周长为;
    故答案为:.
    【点睛】
    本题考查了等边三角形的性质与判定和弧长计算,中位线的性质,解题关键是熟记弧长公式,正确求出圆心角和半径.
    3、一
    【解析】
    【分析】
    正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【详解】
    解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“!”与“一”是相对面,
    故答案是:一.
    【点睛】
    本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
    4、-2
    【解析】
    【分析】
    将的值代入原式=计算可得.
    【详解】
    解:=
    将代入,原式==-2
    故答案为:-2
    【点睛】
    本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.
    5、
    【解析】
    【分析】
    首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
    【详解】
    解:如果水位上升记为“+”,那么水位下降应记为“﹣”,所以水位下降3米记为﹣3m.
    故答案为:.
    【点睛】
    此题考查的知识点是正数和负数,关键是在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.
    三、解答题
    1、
    (1)见解析
    (2)见解析
    【分析】
    (1)如图,先证明,再根据全等三角形的判定证明结论即可;
    (2)根据全等三角形的性质和等腰三角形的三线合一证明,再根据全等三角形的判定与性质证明即可.
    (1)
    证明:(1)证明:∵,
    ∴,
    即,
    在和中,
    ∵,
    ∴;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)
    证明:∵,
    ∴,,
    ∵,于点,
    ∴.
    ∵,
    ∴,
    在和中,
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查全等三角形的判定与性质、等腰三角形的性质,熟练掌握全等三角形的判定与性质是解答的关键.
    2、50°,25°.
    【分析】
    根据邻补角的性质,可得∠AOD+∠BOD=180°,即,代入可得∠BOD,根据对顶角的性质,可得∠∠AOC的度数,根据角平分线的性质,可得∠DOE的数.
    【详解】
    解:由邻补角的性质,得∠AOD+∠BOD=180°,即
    ∵,
    ∴.
    ∴,
    ∴∠AOC=∠BOD=50°,
    ∵OE平分∠BOD,得
    ∠DOE=∠DOB=25°.
    【点睛】
    本题考查了角平分线的定义,对顶角、邻补角的性质,解题关键是熟记相关性质,根据角之间的关系建立方程求解.
    3、
    (1)人
    (2)甲班有人,乙班有人.
    【分析】
    (1)设两个班总人数为人,再根据各段费用之和为10065元,列方程,再解方程即可;
    (2)设乙班有人,则甲班有人,当时,则 再列方程 再解方程可得答案.
    (1)
    解:设两个班总人数为人,则
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    整理得:
    解得:
    答:两个班总人数为人.
    (2)
    解:设乙班有人,则甲班有人,
    当时,则

    整理得:
    解得:

    答:甲班有人,乙班有人.
    【点睛】
    本题考查的是一元一次方程的应用,最优化选择问题,分段计费问题,理解题意,确定相等关系列方程是解本题的关键.
    4、
    (1)x=2;
    (2)x=-1
    【分析】
    (1)根据一元一次方程的解法解答即可;
    (2)根据一元一次方程的解法解答即可.
    (1)
    解:去括号,得:8-4x+12=6x,
    移项、合并同类项,得:-10x=-20,
    化系数为1,得:x=2;
    (2)
    解:去分母,得:3(2x+3)-(x-2)=6,
    去括号,得:6x+9-x+2=6,
    移项、合并同类项,得:5x=-5,
    化系数为1,得:x=-1;
    【点睛】
    本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
    5、
    (1),
    (2)
    (3),,,,,,,
    【分析】
    (1)先根据一次函数图象的平移可得直线的函数解析式,再分别求出时的值、时的值即可得;
    (2)设点的坐标为,从而可得,再根据线段垂直平分线的判定与性质可得,建立方程求出的值,由此即可得;
    (3)分①点在轴上,②点在轴上两种情况,分别根据建立方程,解方程即可得.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)
    解:由题意得:直线的函数解析式为,
    当时,,解得,即,
    当时,,即;
    (2)
    解:设点的坐标为,
    ,,
    点为线段的中点,,
    垂直平分,
    ,即,
    解得,
    则;
    (3)
    解:由题意,分以下两种情况:
    ①当点在轴上时,设点的坐标为,
    则,


    (Ⅰ)当时,为等腰三角形,
    则,解得或,
    此时点的坐标为或;
    (Ⅱ)当时,为等腰三角形,
    则,解得或,
    此时点的坐标为或(与点重合,舍去);
    (Ⅲ)当时,为等腰三角形,
    则,解得,
    此时点的坐标为;
    ②当点在轴上时,设点的坐标为,
    则,


    (Ⅰ)当时,为等腰三角形,
    则,解得或,
    此时点的坐标为或(与点重合,舍去);
    (Ⅱ)当时,为等腰三角形,
    则,解得或,
    此时点的坐标为或;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (Ⅲ)当时,为等腰三角形,
    则,解得,
    此时点的坐标为;
    综上,所有满足条件的点的坐标为,,,,,,,.
    【点睛】
    本题考查了一次函数图象的平移、线段垂直平分线的判定与性质、等腰三角形、两点之间的距离公式等知识点,较难的是题(3),正确分情况讨论是解题关键.
    x
    -1
    0
    1
    2
    3
    -8
    -4
    0
    4
    8
    购票人数
    不超过50人的部分
    超过50人,但不超过100人的部分
    超过100人的部分
    优惠方案
    无优惠
    每线票价优惠20%
    每线票价优惠50%

    相关试卷

    中考数学湖南省张家界市中考数学历年真题练习 (B)卷(精选):

    这是一份中考数学湖南省张家界市中考数学历年真题练习 (B)卷(精选),共26页。试卷主要包含了下列函数中,随的增大而减小的是,生活中常见的探照灯,利用如图①所示的长为a等内容,欢迎下载使用。

    真题解析湖南省长沙市中考数学历年真题练习 (B)卷(含详解):

    这是一份真题解析湖南省长沙市中考数学历年真题练习 (B)卷(含详解),共30页。试卷主要包含了一元二次方程的根为.,下列方程变形不正确的是,有理数 m等内容,欢迎下载使用。

    【高频真题解析】湖南省张家界市中考数学历年真题汇总 卷(Ⅲ)(含详解):

    这是一份【高频真题解析】湖南省张家界市中考数学历年真题汇总 卷(Ⅲ)(含详解),共27页。试卷主要包含了下列等式变形中,不正确的是,一元二次方程的根为,如图个三角形.,如图,某汽车离开某城市的距离y等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map