终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中考专题湖南省长沙市中考数学二模试题(含答案及解析)

    立即下载
    加入资料篮
    中考专题湖南省长沙市中考数学二模试题(含答案及解析)第1页
    中考专题湖南省长沙市中考数学二模试题(含答案及解析)第2页
    中考专题湖南省长沙市中考数学二模试题(含答案及解析)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考专题湖南省长沙市中考数学二模试题(含答案及解析)

    展开

    这是一份中考专题湖南省长沙市中考数学二模试题(含答案及解析),共22页。试卷主要包含了不等式的最小整数解是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列方程变形不正确的是( )
    A.变形得:
    B.方程变形得:
    C.变形得:
    D.变形得:
    2、已知反比例函数经过平移后可以得到函数,关于新函数,下列结论正确的是( )
    A.当时,y随x的增大而增大B.该函数的图象与y轴有交点
    C.该函数图象与x轴的交点为(1,0)D.当时,y的取值范围是
    3、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
    A.10B.11C.12D.13
    4、如图,点F在BC上,BC=EF,AB=AE,∠B=∠E,则下列角中,和2∠C度数相等的角是( )
    A.B.C.D.
    5、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
    A.B.C.D.
    6、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.米B.10米C.米D.12米
    7、不等式的最小整数解是( )
    A.B.3C.4D.5
    8、如图是由一些完全相同的小立方块搭成的几何体从左面、上面看到的形状图.搭成这个几何体所用的小立方块的个数至少是( )
    A.3个B.4个C.5个D.6个
    9、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为( )
    A.1B.2C.D.
    10、一元二次方程的根为( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、2020年10月,华为推出了高端手机,它搭载的麒麟9900芯片是全球第一颗,也是唯一一颗采用5纳米工艺制造的,集成了153亿个晶体管,比苹果的芯片多了,是目前世界上晶体管最多、功能最完整的.其中“153亿”这个数据用科学记数法可以表示为__.
    2、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点,则点A的坐标是__________.
    3、计算:__.
    4、为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:
    则这组数据的众数是______;平均数是______.
    5、计算:______.
    三、解答题(5小题,每小题10分,共计50分)
    1、数学课上,王老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)请用两种不同的方法求图2大正方形的面积:
    方法1: ;
    方法2: ;
    (2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系 ;
    (3)根据(2)题中的等量关系,解决如下问题:
    ①已知:a+b=5,(a﹣b)2=13,求ab的值;
    ②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.
    2、已知:如图,在中,,,垂足为点D,E为边AC上一点,联结BE交CD于点F,并满足.求证:
    (1);
    (2)过点C作,交BE于点G,交AB于点M,求证:.
    3、先化简,再求值:,其中.
    4、如图,直线AB、CD相交于点O,OE平分∠BOD,且.求∠AOC和∠DOE的度数.
    5、计算:(﹣3a2)3+(4a3)2﹣a2•a4.
    -参考答案-
    一、单选题
    1、D
    【分析】
    根据等式的性质解答.
    【详解】
    解:A. 变形得:,故该项不符合题意;
    B. 方程变形得:,故该项不符合题意;
    C. 变形得:,故该项不符合题意;
    D. 变形得:,故该项符合题意;
    故选:D.
    【点睛】
    此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键.
    2、C
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    函数的图象是由函数的图象向下平移1个单位长度后得到的,根据两个函数的图像,可排除A,B,C选项,将y=0代入函数可得到函数与x轴交点坐标为(1,0),故C选项正确.
    【详解】
    解:函数与函数的图象如下图所示:
    函数的图象是由函数的图象向下平移1个单位长度后得到的,
    A、由图象可知函数,当时,y随x的增大而减小,选项说法错误,与题意不符;
    B、函数的图象是由函数的图象向下平移一个单位后得到的,所以函数与y轴无交点,选项说法错误,与题意不符;
    C、将y=0代入函数中得,,解得,故函数与x轴交点坐标为(1,0),选项说法正确,与题意相符;
    D、当时, ,有图像可知当时,y的取值范围是,故选项说法错误,与题意不符;
    故选:C.
    【点睛】
    本题考查反比例函数的图象,以及函数图象的平移,函数与数轴的交点求法,能够画出图象,并掌握数形结合的方法是解决本题的关键.
    3、A
    【分析】
    作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
    【详解】
    解:如图,作正多边形的外接圆,连接AO,BO,
    ∴∠AOB=2∠ADB=36°,
    ∴这个正多边形的边数为=10.
    故选:A.
    【点睛】
    此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
    4、D
    【分析】
    根据SAS证明△AEF≌△ABC,由全等三角形的性质和等腰三角形的性质即可求解.
    【详解】
    解:在△AEF和△ABC中,

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴△AEF≌△ABC(SAS),
    ∴AF=AC,∠AFE=∠C,
    ∴∠C=∠AFC,
    ∴∠EFC=∠AFE+∠AFC=2∠C.
    故选:D.
    【点睛】
    本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.
    5、A
    【分析】
    如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
    【详解】
    解:如图:过C作CE⊥OA,垂足为E,
    ∵菱形OABC,
    ∴OC=OA=4
    ∵,
    ∴∠OCE=30°
    ∵OC=4
    ∴OE=2
    ∴CE=
    ∴点C的坐标为.
    故选A.
    【点睛】
    本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
    6、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    7、C
    【分析】
    先求出不等式解集,即可求解.
    【详解】
    解:

    解得:
    所以不等式的最小整数解是4.
    故选:C.
    【点睛】
    本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.
    8、C
    【分析】
    根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,从而得到上层至少1块,底层2行至少有3+1=4块,即可求解.
    【详解】
    解:根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,
    所以上层至少1块,底层2行至少有3+1=4块,
    所以搭成这个几何体所用的小立方块的个数至少是1+4=5块.
    故选:C
    【点睛】
    本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从左面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    9、C
    【分析】
    取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.
    【详解】
    解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,
    ∵点A(1,0),B (3,0),
    ∴OA=1,OB=3,
    ∴OE=2,
    ∴ED=2×=,
    ∵∠ACB=90°,
    ∴点C在以AB为直径的圆上,
    ∴线段CD长的最小值为−1.
    故选:C.
    【点睛】
    本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.
    10、C
    【分析】
    先移项,把方程化为 再利用直接开平方的方法解方程即可.
    【详解】
    解:,


    故选C
    【点睛】
    本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.
    【详解】
    153亿.
    故答案为:.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.
    2、(-3,9)
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【解析】
    【分析】
    设长方形纸片的长为x,宽为y,根据点B的坐标,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再结合点A的位置,即可得出点A的坐标.
    【详解】
    解:设长方形纸片的长为x,宽为y,
    依题意,得:,
    解得:,
    ∴x-y=3,x+2y=9,
    ∴点A的坐标为(-3,6).
    故答案为:(-3,9).
    【点睛】
    本题考查了二元一次方程组的应用以及坐标与图形性质,找准等量关系,正确列出二元一次方程组是解题的关键.
    3、
    【解析】
    【分析】
    先得出最简公分母为12,再进行通分和约分运算即可求出答案.
    【详解】
    解:原式

    【点睛】
    本题考查了有理数的加减混合运算,对于异分母分数的加减混合运算,先要通分转化成同分母分数的加减混合运算是解决问题的关键.
    4、 141 143
    【解析】
    【分析】
    根据平均数,众数的性质分别计算出结果即可.
    【详解】
    解:根据题目给出的数据,可得:
    平均数为:=143;
    141出现了5次,出现次数最多,则众数是:141;
    故答案为:141;143.
    【点睛】
    本题考查的是平均数,众数,熟悉相关的计算方法是解题的关键.
    5、-1
    【解析】
    【分析】
    根据有理数减法法则计算即可.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【详解】
    解:,
    故答案为:-1.
    【点睛】
    本题考查了有理数减法,解题关键是熟记有理数减法法则,准确计算.
    三、解答题
    1、
    (1);
    (2)
    (3)①;②-2
    【分析】
    (1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;
    (2)由(1)直接可得关系式;
    (3)①由(a-b)2=a2+b2-2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021-a=x,a-2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=-2,再求(2021-a)(a-2020)=-2即可.
    (1)
    方法一:∵大正方形的边长为(a+b),
    ∴S=(a+b)2;
    方法二:大正方形是由2个长方形,2个小正方形拼成,
    ∴S=b2+ab+ab+a2=a2+b2+2ab;
    故答案为:(a+b)2,a2+b2+2ab;
    (2)
    由(1)可得(a+b)2=a2+b2+2ab;
    故答案为:(a+b)2=a2+b2+2ab;
    (3)
    ①∵(a-b)2=a2+b2-2ab=13①,
    (a+b)2=a2+b2+2ab=25②,
    由①-②得,-4ab=-12,
    解得:ab=3;
    ②设2021-a=x,a-2020=y,
    ∴x+y=1,
    ∵(2021-a)2+(a-2020)2=5,
    ∴x2+y2=5,
    ∵(x+y)2=x2+2xy+y2=1,
    ∴2xy=1-(x2+y2)=1-5=-4,
    解得:xy=-2,
    ∴(2021-a)(a-2020)=-2.
    【点睛】
    本题考查完全平方公式的几何背景,熟练掌握正方形、长方形面积的求法,灵活应用完全平方公式的变形是解题的关键.
    2、
    (1)见解析
    (2)见解析
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)由可得可得,然后再说明,即可证明结论;
    (2)说明即可证明结论.
    (1)
    证明:∵

    ∵,
    ∴∠BDC=

    ∵,
    ∴∠A+∠ABC=90°,∠DCB+∠ABC=90°,
    ∴∠A=∠DCB
    ∵∠CBD=∠CBD

    ∴.
    (2)
    解:∵
    ∴∠A=∠CBE

    ∴∠DCB=∠CBE
    ∵∠AEB=∠CBE+∠BCE,∠CFM=∠CDA+∠FMD
    ∴∠AEB=∠CFM
    ∵CG⊥BE,CD⊥AB,∠CFD=∠DFB
    ∴∠MCF=∠FBD

    ∴.
    【点睛】
    本题主要考查了相似三角形的判定与性质,灵活运用相似三角形的判定定理成为解答本题的关键.
    3、
    【分析】
    根据非负数的性质先求解的值,再去括号,合并同类项进行整式的加减运算,最后再求解代数式的值即可.
    【详解】
    解:

    解得:

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    当时,
    原式
    【点睛】
    本题考查的是非负数的性质,整式的加减运算中的化简求值,掌握“非负数的性质以及去括号,合并同类项”是解本题的关键.
    4、50°,25°.
    【分析】
    根据邻补角的性质,可得∠AOD+∠BOD=180°,即,代入可得∠BOD,根据对顶角的性质,可得∠∠AOC的度数,根据角平分线的性质,可得∠DOE的数.
    【详解】
    解:由邻补角的性质,得∠AOD+∠BOD=180°,即
    ∵,
    ∴.
    ∴,
    ∴∠AOC=∠BOD=50°,
    ∵OE平分∠BOD,得
    ∠DOE=∠DOB=25°.
    【点睛】
    本题考查了角平分线的定义,对顶角、邻补角的性质,解题关键是熟记相关性质,根据角之间的关系建立方程求解.
    5、
    【分析】
    原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.
    【详解】
    解:(﹣3a2)3+(4a3)2﹣a2•a4
    =
    =
    =
    【点睛】
    本题主要考查了幂的乘方与积的乘方运算,熟练掌握运算法则是解答本题的关键.
    一分钟跳绳个数(个)
    141
    144
    145
    146
    学生人数(名)
    5
    2
    1
    2

    相关试卷

    备考练习湖南省长沙市中考数学二模试题(含答案解析):

    这是一份备考练习湖南省长沙市中考数学二模试题(含答案解析),共27页。试卷主要包含了下列语句中,不正确的是,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。

    2023年湖南省长沙市雨花区南雅中学中考数学二模试卷(含解析):

    这是一份2023年湖南省长沙市雨花区南雅中学中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖南省长沙市长沙县中考数学二模试卷(含解析):

    这是一份2023年湖南省长沙市长沙县中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map