年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    中考专题湖南省武冈市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解)

    中考专题湖南省武冈市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解)第1页
    中考专题湖南省武冈市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解)第2页
    中考专题湖南省武冈市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考专题湖南省武冈市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解)

    展开

    这是一份中考专题湖南省武冈市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了已知,则的补角等于,如图,下列条件中不能判定的是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列图形中,能用,,三种方法表示同一个角的是( )
    A.B.
    C.D.
    2、如图,在中,,,,则的度数为( )
    A.87°B.88°C.89°D.90°
    3、有理数,在数轴上对应点如图所示,则下面式子中正确的是( )
    A.B.C.D.
    4、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
    A.19°B.20°C.24°D.25°
    5、北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为( )
    A.B.C.D.
    6、已知,则的补角等于( )
    A.B.C.D.
    7、如图,AD为的直径,,,则AC的长度为( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.B.C.4D.
    8、如图,已知与都是以A为直角顶点的等腰直角三角形,绕顶点A旋转,连接.以下三个结论:①;②;③;其中结论正确的个数是( )
    A.1B.2C.3D.0
    9、如图,下列条件中不能判定的是( )
    A.B.C.D.
    10、下列方程中,解为的方程是( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图所示,已知直线,且这两条平行线间的距离为5个单位长度,点为直线上一定点,以为圆心、大于5个单位长度为半径画弧,交直线于、两点.再分别以点、为圆心、大于长为半径画弧,两弧交于点,作直线,交直线于点.点为射线上一动点,作点关于直线的对称点,当点到直线的距离为4个单位时,线段的长度为______.
    2、观察下列图形,它们是按一定规律排列的,按此规律,第2022个图形中“○”的个数为______.
    3、如图,过的重心G作分别交边AC、BC于点E、D,联结AD,如果AD平分,,那么______.
    4、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    5、若反比例函数的图象位于第一、第三象限,则的取值范围是_______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图是一块长方形花园,内部修有两个凉亭及过道,其余部分种植花圃(阴影部分).
    (1)用整式表示花圃的面积;
    (2)若a=3m,修建花圃的成本是每平方米60元,求修建花圃所需费用.
    2、某校准备从八年级1班、2班的团员中选取两名同学作为运动会的志愿者,已知1班有4名团员(其中男生2人,女生2人).2班有3名团员(其中男生1人,女生2人).
    (1)如果从这两个班的全体团员中随机选取一名同学作为志愿者的组长,则这名同学是男生的概率为______;
    (2)如果分别从1班、2班的团员中随机各选取一人,请用画树状图或列表的方法求这两名同学恰好是一名男生、一名女生的概率.
    3、第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:
    (1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;
    (2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;
    (3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?
    4、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.
    (1)随机摸取一个小球的标号是奇数,该事件的概率为_______;
    (2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出的小球标号相同的概率.
    5、解方程:
    (1);
    (2).
    -参考答案-
    一、单选题
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    1、A
    【分析】
    根据角的表示的性质,对各个选项逐个分析,即可得到答案.
    【详解】
    A选项中,可用,,三种方法表示同一个角;
    B选项中,能用表示,不能用表示;
    C选项中,点A、O、B在一条直线上,
    ∴能用表示,不能用表示;
    D选项中,能用表示,不能用表示;
    故选:A.
    【点睛】
    本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
    2、A
    【分析】
    延长DB至E,使BE=AB,连接AE,则DE=CD,从而可求得∠C=∠E=31°,再根据三角形内角和可求度数.
    【详解】
    解:延长DB至E,使BE=AB,连接AE,
    ∴∠BAE=∠E,
    ∵,
    ∴∠BAE=∠E=31°,
    ∵AB+BD=CD
    ∴BE+BD=CD
    即DE=CD,
    ∵AD⊥BC,
    ∴AD垂直平分CE,
    ∴AC=AE,
    ∴∠C=∠E=31°,
    ∴;
    故选:A.
    【点睛】
    此题考查了等腰三角形的性质,垂直平分线的性质,三角形内角和定理等知识点的综合运用.恰当作出辅助线是正确解答本题的关键.
    3、C
    【分析】
    先根据数轴可得,再根据有理数的加减法与乘法法则逐项判断即可得.
    【详解】
    解:由数轴得:.
    A、,此项错误;
    B、由得:,所以,此项错误;
    C、,此项正确;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    D、,此项错误;
    故选:C.
    【点睛】
    本题考查了数轴、绝对值、有理数的加减法与乘法,熟练掌握数轴的性质是解题关键.
    4、B
    【分析】
    根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
    【详解】
    ∵BD的垂直平分线交AB于点E,



    ∵将沿AD折叠,点C恰好与点E重合,
    ∴,,





    故选:B.
    【点睛】
    本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
    5、C
    【分析】
    科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
    【详解】
    解:12000
    故选C
    【点睛】
    本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
    6、C
    【分析】
    补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
    【详解】
    解:∵,
    ∴的补角等于,
    故选:C.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
    7、A
    【分析】
    连接CD,由等弧所对的圆周角相等逆推可知AC=DC,∠ACD=90°,再由勾股定理即可求出.
    【详解】
    解:连接CD

    ∴AC=DC
    又∵AD为的直径
    ∴∠ACD=90°



    故答案为:A.
    【点睛】
    本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.
    8、B
    【分析】
    证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依据,推出,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,∠ACB=45°,求出∠BMC=90°,即可判断③正确.
    【详解】
    解:∵与都是以A为直角顶点的等腰直角三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE,
    ∴,故①正确;
    ∵△BAD≌△CAE,
    ∴∠ABD=∠ACE,
    ∵∠ABD+∠DBC=45°,
    ∴∠ACE+∠DBC=45°,
    ∵,
    ∴,
    ∴不成立,故②错误;
    设BD交CE于M,
    ∵∠ACE+∠DBC=45°,∠ACB=45°,
    ∴∠BMC=90°,
    ∴,故③正确,
    故选:B.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键.
    9、A
    【分析】
    根据平行线的判定逐个判断即可.
    【详解】
    解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
    ∴∠3=∠5,
    因为”同旁内角互补,两直线平行“,
    所以本选项不能判断AB∥CD;
    B、∵∠3=∠4,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    C、∵,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    D、∵∠1=∠5,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    故选:A.
    【点睛】
    本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
    10、D
    【分析】
    求出选项各方程的解即可.
    【详解】
    A、,解得:,不符合题意.
    B、,解得:,不符合题意.
    C、,解得:,不符合题意.
    D、,解得:,符合题意.
    故选:D .
    【点睛】
    此题考查的知识点是一元一次方程的解,关键是分别求出各方程的解.
    二、填空题
    1、或
    【解析】
    【分析】
    根据勾股定理求出PE=3,设OH=x,可知,DH=(x-3)或(3- x),勾股定理列出方程,求出x值即可.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【详解】
    解:如图所示,过点作直线的垂线,交m、n于点D、E,连接,
    由作图可知,,,点到直线的距离为4个单位,即,

    则,,
    设OH=x,可知,DH=(3- x),
    解得,,

    如图所示,过点作直线的垂线,交m、n于点D、E,连接,
    由作图可知,,,点到直线的距离为4个单位,即,

    则,,
    设OH=x,可知,DH=(x-3),
    解得,,

    故答案为:或
    【点睛】
    本题考查了勾股定理和轴对称,解题关键是画出正确图形,会分类讨论,设未知数,根据勾股定理列方程.
    2、6067
    【解析】
    【分析】
    设第n个图形共有an个○(n为正整数),观察图形,根据各图形中○个数的变化可找出变化规律“an=3n+1(n为正整数)”,依此规律即可得出结论.
    【详解】
    解:设第n个图形共有an个○(n为正整数).
    观察图形,可知:a1=4=3+1=3×1+1,a2=7=6+1=3×2+1,a3=10=9+1=3×3+1,a4=13=12+1=3×4+1,…,
    ∴an=3n+1(n为正整数),
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴a2022=3×2022+1=6067.
    故答案为6067.
    【点睛】
    本题考查了规律型:图形的变化类,根据各图形中○个数的变化找出变化规律“an=3n+1(n为正整数)”是解题的关键.
    3、8
    【解析】
    【分析】
    由重心的性质可以证明,再由AD平分和可得DE=AE,最后根据得到即可求出EC.
    【详解】
    连接CG并延长与AB交于H,
    ∵G是的重心



    ∴,,


    ∵AD平分



    ∴,

    【点睛】
    本题考查三角形的重心的性质、相似三角形的性质与判定、平行线分线段成比例,解题的关键是利用好平行线得到多个结论.
    4、49
    【解析】
    【分析】
    延长FE交AB于点M,则,,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    如图,延长FE交AB于点M,则,,
    ∵四边形ABCD是正方形,
    ∴,
    ∴是等腰直角三角形,
    ∴,
    在中,,
    ∴,
    ∴.
    故答案为:49.
    【点睛】
    本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.
    5、
    【解析】
    【分析】
    根据反比例函数的性质解答.
    【详解】
    解:∵反比例函数的图象位于第一、第三象限,
    ∴k-1>0,
    ∴,
    故答案为:.
    【点睛】
    此题考查了反比例函数的性质:当k>0时,函数图象的两个分支分别在第一、三象限内;当k

    相关试卷

    中考数学湖南省武冈市中考数学三年高频真题汇总 卷(Ⅲ)(含答案详解):

    这是一份中考数学湖南省武冈市中考数学三年高频真题汇总 卷(Ⅲ)(含答案详解),共27页。试卷主要包含了下列语句中,不正确的是,一元二次方程的根为.等内容,欢迎下载使用。

    中考数学湖南省武冈市中考数学三年高频真题汇总 卷(Ⅰ)(含答案及详解):

    这是一份中考数学湖南省武冈市中考数学三年高频真题汇总 卷(Ⅰ)(含答案及详解),共24页。试卷主要包含了如图,,生活中常见的探照灯,利用如图①所示的长为a等内容,欢迎下载使用。

    【真题汇总卷】湖南省武冈市中考数学五年真题汇总 卷(Ⅲ)(含答案详解):

    这是一份【真题汇总卷】湖南省武冈市中考数学五年真题汇总 卷(Ⅲ)(含答案详解),共28页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map