搜索
    上传资料 赚现金
    英语朗读宝

    中考专题贵州省中考数学真题模拟测评 (A)卷(含答案解析)

    中考专题贵州省中考数学真题模拟测评 (A)卷(含答案解析)第1页
    中考专题贵州省中考数学真题模拟测评 (A)卷(含答案解析)第2页
    中考专题贵州省中考数学真题模拟测评 (A)卷(含答案解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考专题贵州省中考数学真题模拟测评 (A)卷(含答案解析)

    展开

    这是一份中考专题贵州省中考数学真题模拟测评 (A)卷(含答案解析),共29页。试卷主要包含了单项式的次数是,下列图标中,轴对称图形的是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在中,,,,则的度数为( )
    A.87°B.88°C.89°D.90°
    2、如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2),再分别连接图(2)中间的小三角形三边中点得到图(3),按这种方法继续下去,第6个图形有( )个三角形.
    A.20B.21C.22D.23
    3、如图所示,在长方形ABCD中,,,且,将长方形ABCD绕边AB所在的直线旋转一周形成圆柱甲,再将长方形ABCD绕边BC所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分別为、.下列结论中正确的是( )
    A.B.C.D.不确定
    4、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
    A.2 个B.3 个C.4 个D.5 个.
    5、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
    A.B.C.D.
    6、单项式的次数是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.1B.2C.3D.4
    7、下列图标中,轴对称图形的是( )
    A.B.C.D.
    8、下面的图形中,是轴对称图形但不是中心对称图形的是( )
    A.B.C.D.
    9、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )
    A.B.C.D.
    10、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )
    A.B.
    C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、计算:__.
    2、勾股定理有着悠久的历史,它曾引起很多人的兴趣,1955年希腊发行了以勾股定理为背景的邮票.如图,在中,,,.分别以AB,AC,BC为边向外作正方形ABMN,正方形ACKL,正方形BCDE,并按如图所示作长方形HFPQ,延长BC交PQ于G.则长方形CDPG的面积为______.
    3、如图,数轴上的点所表示的数为,化简的结果为____________.
    4、如图,在矩形ABCD中,cm,cm.动点P、Q分别从点A、C以1cm/s的速度同时出发.动点P沿AB向终点B运动,动点Q沿CD向终点D运动,连结PQ交对角线AC于点O.设点P的运动时间为.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)当四边形APQD是矩形时,t的值为______.
    (2)当四边形APCQ是菱形时,t的值为______.
    (3)当是等腰三角形时,t的值为______.
    5、若过某多边形一个顶点的所有对角线将这个多边形分成3个三角形,则这个多边形是________边形.
    三、解答题(5小题,每小题10分,共计50分)
    1、在数轴上,点A,B分别表示数a,b,且,记.
    (1)求AB的值;
    (2)如图,点P,Q分别从点A,B;两点同时出发,都沿数轴向右运动,点P的速度是每秒4个单位长度,点Q的速度是每秒1个单位长度,点C从原点出发沿数轴向右运动,速度是每秒3个单位长度,运动时间为t秒.
    ①请用含t的式子分别写出点P、点Q、点C所表示的数;
    ②当t的值是多少时,点C到点P,Q的距离相等?
    2、数学课上,王老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.
    (1)请用两种不同的方法求图2大正方形的面积:
    方法1: ;
    方法2: ;
    (2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系 ;
    (3)根据(2)题中的等量关系,解决如下问题:
    ①已知:a+b=5,(a﹣b)2=13,求ab的值;
    ②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.
    3、如图,已知直线,,平分.
    (1)求证:;
    (2)若比的2倍少3度,求的度数.
    4、如图, 已知在 Rt 中, , 点 为射线 上一动点, 且 , 点 关于直线 的对称点为点 , 射线 与射线 交于点 .
    (1)当点 在边 上时,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ① 求证: ;
    ②延长 与边 的延长线相交于点 , 如果 与 相似,求线段 的长;
    (2)联结 , 如果 , 求 的值.
    5、某商店用3700元购进A、B两种玻璃保温杯共80个,这两种玻璃保温杯的进价、标价如下表所示:
    (1)这两种玻璃保温杯各购进多少个?
    (2)已知A型玻璃保温杯按标价的8折出售,B型玻璃保温杯按标价的7.5折出售.在运输过程中有2个A型和1个B型玻璃保温杯不慎损坏,不能销售,请问在其它玻璃保温杯全部售出的情况下,该商店共获利多少元?
    -参考答案-
    一、单选题
    1、A
    【分析】
    延长DB至E,使BE=AB,连接AE,则DE=CD,从而可求得∠C=∠E=31°,再根据三角形内角和可求度数.
    【详解】
    解:延长DB至E,使BE=AB,连接AE,
    ∴∠BAE=∠E,
    ∵,
    ∴∠BAE=∠E=31°,
    ∵AB+BD=CD
    ∴BE+BD=CD
    即DE=CD,
    ∵AD⊥BC,
    ∴AD垂直平分CE,
    ∴AC=AE,
    ∴∠C=∠E=31°,
    ∴;
    故选:A.
    【点睛】
    此题考查了等腰三角形的性质,垂直平分线的性质,三角形内角和定理等知识点的综合运用.恰当作出辅助线是正确解答本题的关键.
    2、B
    【分析】
    由第一个图中1个三角形,第二个图中5个三角形,第三个图中9个三角形,每次递增4个,即可得· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    出第n个图形中有(4n-3)个三角形.
    【详解】
    解:由图知,第一个图中1个三角形,即(4×1-3)个;
    第二个图中5个三角形,即(4×2-3)个;
    第三个图中9个三角形,即(4×3-3)个;

    ∴第n个图形中有(4n-3)个三角形.
    ∴第6个图形中有个三角形
    故选B
    【点睛】
    本题考查了图形变化的一般规律问题.能够通过观察,掌握其内在规律是解题的关键.
    3、C
    【分析】
    根据公式,得=,=,判断选择即可.
    【详解】
    ∵=,=,
    ∴=.
    故选C.
    【点睛】
    本题考查了圆柱体的形成及其侧面积的计算,正确理解侧面积的计算公式是解题的关键.
    4、C
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
    (2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
    (3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
    (4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
    (5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
    故选C.
    【点睛】
    本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    5、B
    【分析】
    根据三角尺可得,根据三角形的外角性质即可求得
    【详解】
    解:
    故选B
    【点睛】
    本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
    6、C
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    单项式中所有字母的指数和是单项式的次数,根据概念直接作答即可.
    【详解】
    解:单项式的次数是3,
    故选C
    【点睛】
    本题考查的是单项式的次数的含义,掌握“单项式中所有字母的指数和是单项式的次数”是解本题的关键.
    7、A
    【详解】
    解:A、是轴对称图形,故本选项符合题意;
    B、不是轴对称图形,故本选项不符合题意;
    C、不是轴对称图形,故本选项不符合题意;
    D、不是轴对称图形,故本选项不符合题意;
    故选:A
    【点睛】
    本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
    8、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;
    B、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    C、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    D、是轴对称图形,不是中心对称图形,故此选项符合题意;
    故选:D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    9、A
    【分析】
    根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.
    【详解】
    解:B是俯视图,C是左视图,D是主视图,
    故四个平面图形中A不是这个几何体的三视图.
    故选:A.
    【点睛】
    本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.
    10、A
    【分析】
    整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵大正方形边长为:,面积为:;
    1个小正方形的面积加上4个矩形的面积和为:;
    ∴.
    故选:A.
    【点睛】
    此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    有理数的混合运算,此题中先算乘方,再算减法即可.
    【详解】

    故答案为:.
    【点睛】
    此题考查有理数的混合运算,熟练掌握有理数混合运算顺序是解题关键.
    2、12
    【解析】
    【分析】
    证明Rt△AIC≌Rt△CGK,得到AI=CG,利用勾股定理结合面积法求得CG=,进一步计算即可求解.
    【详解】
    解:过点A作AI⊥BC于点I,
    ∵正方形ACKL,∴∠ACK=90°,AC=CK,
    ∴∠ACI+∠KCG=90°,∠ACI+∠CAI=90°,
    ∴Rt△AIC≌Rt△CGK,
    ∴AI=CG,
    ∵,,.
    ∴BC=5,
    ∵,
    ∴AI=,则CG=,
    ∵正方形BCDE,
    ∴CD=BC=5,
    ∴长方形CDPG的面积为5.
    故答案为:12.

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查了全等三角形的判定和性质,勾股定理,熟记各图形的性质并准确识图是解题的关键.
    3、-a
    【解析】
    【分析】
    根据数轴,得a<0,化简即可.
    【详解】
    ∵a<0,
    ∴= -a,
    故答案为:-a.
    【点睛】
    本题考查了绝对值的化简,正确掌握绝对值化简的基本步骤是解题的关键.
    4、 4 或5或4
    【解析】
    【分析】
    (1)根据矩形的性质得到CD=cm,,求出DQ=(8-t)cm,由四边形APQD是矩形时,得到t=8-t,求出t值;
    (2)连接PC,求出AP=PC=tcm,PB=(8-t)cm,由勾股定理得,即,求解即可;
    (3)由勾股定理求出AC=10cm,证明△OAP≌△OCQ,得到OA=OC=5cm,分三种情况:当AP=OP时,过点P作PN⊥AO于N,证明△NAP∽△BAC,得到,求出t=;当AP=AO=5cm时,t=5;当OP=AO=5cm时,过点O作OG⊥AB于G,证明△OAG∽△CAB,得到,代入数值求出t.
    【详解】
    解:(1)由题意得AP=CQ=t,
    ∵在矩形ABCD中,cm,cm.
    ∴CD=cm,,
    ∴DQ=(8-t)cm,
    当四边形APQD是矩形时,AP=DQ,
    ∴t=8-t,
    解得t=4,
    故答案为:4;
    (2)连接PC,
    ∵四边形APCQ是菱形,
    ∴AP=PC=tcm,PB=(8-t)cm,
    ∵在矩形ABCD中,∠B=90°,
    ∴,
    ∴,
    解得,
    故答案为:;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (3)∵∠B=90°,cm,cm.
    ∴AC=10cm,
    ∵,
    ∴∠OAP=∠OCQ,∠OPA=∠OQC,
    ∴△OAP≌△OCQ,
    ∴OA=OC=5cm,
    分三种情况:
    当AP=OP时,过点P作PN⊥AO于N,则AN=ON=2.5cm,
    ∵∠NAP=∠BAC,∠ANP=∠B,
    ∴△NAP∽△BAC,
    ∴,
    ∴,
    解得t=;
    当AP=AO=5cm时,t=5;
    当OP=AO=5cm时,过点O作OG⊥AB于G,则,
    ∵∠OAG=∠BAC,∠OGA=∠B,
    ∴△OAG∽△CAB,
    ∴,
    ∴,
    解得t=4,
    故答案为:或5或4.
    【点睛】
    此题考查了矩形的性质,菱形的性质,等腰三角形的性质,勾股定理,相似三角形的判定及性质,熟记各知识点并应用解决问题是解题的关键.
    5、五
    【解析】
    【分析】
    根据过多边形的一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,计算可求解.
    【详解】
    解:设这是个n边形,由题意得
    n-2=3,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴n=5,
    故答案为:五.
    【点睛】
    本题主要考查多边形的对角线,掌握多边形对角线的性质是解题的关键.
    三、解答题
    1、
    (1)
    (2)①点所表示的数为,点所表示的数为,点所表示的数为;②或
    【分析】
    (1)先根据绝对值的非负性求出的值,再代入计算即可得;
    (2)①根据“路程=速度时间”、结合数轴的性质即可得;
    ②根据建立方程,解方程即可得.
    (1)
    解:,

    解得,

    (2)
    解:①由题意,点所表示的数为,
    点所表示的数为,
    点所表示的数为;
    ②,,
    由得:,
    即或,
    解得或,
    故当或时,点到点的距离相等.
    【点睛】
    本题考查了数轴、绝对值、一元一次方程的应用等知识点,熟练掌握数轴的性质是解题关键.
    2、
    (1);
    (2)
    (3)①;②-2
    【分析】
    (1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;
    (2)由(1)直接可得关系式;
    (3)①由(a-b)2=a2+b2-2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021-a=x,a-2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=-2,再求(2021-a)(a-2020)=-2即可.
    (1)
    方法一:∵大正方形的边长为(a+b),
    ∴S=(a+b)2;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    方法二:大正方形是由2个长方形,2个小正方形拼成,
    ∴S=b2+ab+ab+a2=a2+b2+2ab;
    故答案为:(a+b)2,a2+b2+2ab;
    (2)
    由(1)可得(a+b)2=a2+b2+2ab;
    故答案为:(a+b)2=a2+b2+2ab;
    (3)
    ①∵(a-b)2=a2+b2-2ab=13①,
    (a+b)2=a2+b2+2ab=25②,
    由①-②得,-4ab=-12,
    解得:ab=3;
    ②设2021-a=x,a-2020=y,
    ∴x+y=1,
    ∵(2021-a)2+(a-2020)2=5,
    ∴x2+y2=5,
    ∵(x+y)2=x2+2xy+y2=1,
    ∴2xy=1-(x2+y2)=1-5=-4,
    解得:xy=-2,
    ∴(2021-a)(a-2020)=-2.
    【点睛】
    本题考查完全平方公式的几何背景,熟练掌握正方形、长方形面积的求法,灵活应用完全平方公式的变形是解题的关键.
    3、
    (1)见解析
    (2)
    【分析】
    (1)根据平行线的性质,角平分线的定义,直角三角形的两锐角互余可得,,,进而即可得,即;
    (2)根据题意,由(1)的角度之间关系可得,结合已知条件建立二元一次方程组,解方程组即可求解.
    (1)
    如图,
    平分


    (2)
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    如图,
    由比的2倍少3度,
    即①
    ,又
    即②
    解得
    【点睛】
    本题考查了平行线的性质,直角三角形的两锐角互余,二元一次方程组,数形结合是解题的关键.
    4、
    (1)①见解析;②
    (2)3或4
    【分析】
    (1)① 如图1,连接CE,DE,根据题意,得到CB=CE=CA,利用等腰三角形的底角与顶角的关系,三角形外角的性质,可以证明;
    ②连接BE,交CD于定Q,利用三角形外角的性质,确定△DCB∽△BGE,利用相似,证明△ABG是等腰三角形,△ABE是等腰三角形,△BEF是等腰直角三角形,用BE表示GE,后用相似三角形的性质求解即可;
    (2)分点D在AB上和在AB的延长上,两种情形,运用等腰三角形的性质,勾股定理分别计算即可.
    (1)
    ① 如图1,连接CE,DE,
    ∵点B关于直线CD的对称点为点E,
    ∴CE=CB,BD=DE,∠ECD=∠BCD,∠ACE=90°-2∠ECD,
    ∵AC=BC,
    ∴AC=EC,
    ∴∠AEC=∠ACE,
    ∵2∠AEC=180°-∠ACE=180°-90°+2∠ECD,
    ∴∠AEC=45°+∠ECD,
    ∵∠AEC=∠AFC +∠ECD,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴∠AEC=45°+∠ECD=∠AFC +∠ECD,
    ∴∠AFC=45°;
    ②连接BE,交CD于定Q,
    根据①得∠EAB =∠DCB,∠AFC=45°,
    ∵点B关于直线CD的对称点为点E,
    ∴∠EFC=∠BFC=45°,CF⊥BE,
    ∴BF⊥AG,△BEF是等腰直角三角形, BF=EF,
    ∵∠BEG>∠EAB,与 相似,
    ∴△DCB∽△BGE,
    ∴∠EAB =∠DCB=∠BGE,∠DBC=∠BEG=45°,
    ∴AB=BG,∠EAB+∠EBA=∠EAB+∠BGE,
    ∴∠EAB=∠EBA=∠BGE,
    ∴AE=BE=BF=EF,
    ∵BF⊥AG,
    ∴AF=FG=AE+EF=BE+EF=BE+BE=BE,
    ∴GE=EF+FG=BE+BE= BE,
    ∴=,
    ∵△DCB∽△BGE,
    ∴,
    ∴,
    ∴BD==,
    (2)
    过点C作CM⊥AE,垂足为M,
    根据①②知,△ACE是等腰三角形,△BEF是等腰直角三角形,
    ∴AM=ME,BF⊥AF,
    设AM=ME=x,CM=y,
    ∵AC=BC=5,∠ACB=90°,,
    ∴,AB=,xy=12,

    ==49,
    ∴x+y=7或x+y=-7(舍去);

    ==1,
    ∴x-y=1或x-y=-1;
    ∴或
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴或
    ∴或
    ∴AE=8或AE=6,
    当点D在AB上时,如图3所示,AE=6,
    设BF=EF=m,
    ∴,
    ∴,
    解得m=1,m=-7(舍去),
    ∴=3;
    当点D在AB的延长线上时,如图4所示,AE=8,
    设BF=EF=n,
    ∴,
    ∴,
    解得n=1,n=7(舍去),
    ∴=4;
    ∴或.
    【点睛】
    本题考查了轴对称的性质,等腰直角三角形的判定性质,等腰三角形的判定和性质,完全平方公式,勾股定理,三角形相似的判定和性质,一元二次方程的解法,分类思想,熟练掌握勾股定理,三角形的相似,一元二次方程的解法是解题的关键.
    5、
    (1)购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
    (2)该商店共获利530元
    【分析】
    (1)设购进A型玻璃保温杯x个,根据购进两个型号玻璃保温杯的总价钱是3700元列方程求解即可;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)根据单件利润=售价-进价和总利润=单件利润×销量求解即可.
    (1)
    解:设购进A型玻璃保温杯x个,则购进B型玻璃保温杯(80-x)个,
    根据题意,得:35x+65(80-x)=3700,
    解得:x=50,
    80-x=80-50=30(个),
    答:购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
    (2)
    解:根据题意,总利润为
    (50×0.8-35)×(50-2)+(100×0.75-65)×(30-1)
    =240+290
    =530(元),
    答:该商店共获利530元.
    【点睛】
    本题考查一元一次方程的应用、有理数混合运算的应用,理解题意,找准等量关系,正确列出方程和算式是解答的关键.
    价格\类型
    A型
    B型
    进价(元/个)
    35
    65
    标价(元/个)
    50
    100

    相关试卷

    模拟真题贵州省铜仁市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解):

    这是一份模拟真题贵州省铜仁市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解),共28页。试卷主要包含了如图,E,如图,下列条件中不能判定的是,下列函数中,随的增大而减小的是等内容,欢迎下载使用。

    真题解析贵州省中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解):

    这是一份真题解析贵州省中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解),共22页。试卷主要包含了如图,,下列各式中,不是代数式的是,如图,下列条件中不能判定的是,下列函数中,随的增大而减小的是等内容,欢迎下载使用。

    真题解析贵州省兴仁市中考数学真题模拟测评 (A)卷(含详解):

    这是一份真题解析贵州省兴仁市中考数学真题模拟测评 (A)卷(含详解),共31页。试卷主要包含了不等式的最小整数解是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map