中考专题贵州省安顺市中考数学三模试题(含答案及解析)
展开
这是一份中考专题贵州省安顺市中考数学三模试题(含答案及解析),共27页。试卷主要包含了下列图形是全等图形的是,如图,有三块菜地△ACD等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )
A.1B.2020C.2021D.2022
2、如图是一个运算程序,若x的值为,则运算结果为( )
A.B.C.2D.4
3、如图,于点,于点,于点,下列关于高的说法错误的是( )
A.在中,是边上的高B.在中,是边上的高
C.在中,是边上的高D.在中,是边上的高
4、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
5、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A.B.C.D.
6、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A.B.C.D.
7、如图,在中,,D是BC的中点,垂足为D,交AB于点E,连接CE.若,,则BE的长为( )
A.3B.C.4D.
8、下列图形是全等图形的是( )
A.B.C.D.
9、如图,有三块菜地△ACD、△ABD、△BDE分别种植三种蔬菜,点D为AE与BC的交点,AD平分∠BAC,AD=DE,AB=3AC,菜地△BDE的面积为96,则菜地△ACD的面积是( )
A.24B.27C.32D.36
10、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )
A.2个B.3个C.4个D.5个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图中给出了某城市连续5天中,每一天的最高气温和最低气温(单位:),那么最大温差是________.
2、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点,· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
则点A的坐标是__________.
3、若,则的值是______.
4、计算:______.
5、如图所示,已知直线,且这两条平行线间的距离为5个单位长度,点为直线上一定点,以为圆心、大于5个单位长度为半径画弧,交直线于、两点.再分别以点、为圆心、大于长为半径画弧,两弧交于点,作直线,交直线于点.点为射线上一动点,作点关于直线的对称点,当点到直线的距离为4个单位时,线段的长度为______.
三、解答题(5小题,每小题10分,共计50分)
1、补全解题过程.
已知:如图,∠AOB=40°,∠BOC=70°,OD平分∠AOC.
求∠BOD的度数.
解:∵∠AOB=40°,∠BOC=70°,
∴∠AOC=∠AOB+∠BOC= °.
∵OD平分∠AOC,
∴∠AOD=∠ ( )(填写推理依据).
∴∠AOD= °.
∴∠BOD=∠AOD﹣∠ .
∴∠BOD= °.
2、如图,平面内有两个点A,B.应用量角器、圆规和带刻度的直尺完成下列画图或测量:
(1)经过A,B两点画直线,写出你发现的基本事实;
(2)利用量角器在直线AB一侧画;
(3)在射线BC上用圆规截取BD=AB(保留作图痕迹);
(4)连接AD,取AD中点E,连接BE;
(5)通过作图我们知道.,观察并测量图形中的角,写出一组你发现的两个角之间可能存在的数量关系.
3、(1)探究:如图1,ABCDEF,试说明.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)应用:如图2,ABCD,点在、之间,与交于点,与交于点.若,,则的大小是多少?
(3)拓展:如图3,直线在直线、之间,且ABCDEF,点、分别在直线、上,点是直线上的一个动点,且不在直线上,连接、.若,则 度(请直接写出答案).
4、如图,在中,,将绕点C旋转得到,连接AD.
(1)如图1,点E恰好落在线段AB上.
①求证:;
②猜想和的关系,并说明理由;
(2)如图2,在旋转过程中,射线BE交线段AC于点F,若,,求CF的长.
5、如图,在等腰中,,点是边上的中点,过点作,交的延长线于点,过点作,交于点,交于点,交于点.
求证:
(1);
(2).
-参考答案-
一、单选题
1、D
【分析】
根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:如图,
由题意得:SA=1,
由勾股定理得:SB+SC=1,
则 “生长”了1次后形成的图形中所有的正方形的面积和为2,
同理可得:
“生长”了2次后形成的图形中所有的正方形面积和为3,
“生长”了3次后形成的图形中所有正方形的面积和为4,
……
“生长”了2021次后形成的图形中所有的正方形的面积和是2022,
故选:D
【点睛】
本题考查了勾股数规律问题,找到规律是解题的关键.
2、A
【分析】
根据运算程序,根据绝对值的性质计算即可得答案.
【详解】
∵<3,
∴=,
故选:A.
【点睛】
本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.
3、C
【详解】
解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
B、在中,是边上的高,该说法正确,故本选项不符合题意;
C、在中,不是边上的高,该说法错误,故本选项符合题意;
D、在中,是边上的高,该说法正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.
4、A
【分析】
根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.
【详解】
解:B是俯视图,C是左视图,D是主视图,
故四个平面图形中A不是这个几何体的三视图.
故选:A.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.
5、D
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
6、B
【分析】
根据三角形的中线的定义判断即可.
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
故选:B.
【点睛】
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
7、D
【分析】
勾股定理求出CE长,再根据垂直平分线的性质得出BE=CE即可.
【详解】
解:∵,,,
∴,
∵,D是BC的中点,垂足为D,
∴BE=CE,
故选:D.
【点睛】
本题考查了勾股定理,垂直平分线的性质,解题关键是熟练运用勾股定理求出CE长.
8、D
【详解】
解:A、不是全等图形,故本选项不符合题意;
B、不是全等图形,故本选项不符合题意;
C、不是全等图形,故本选项不符合题意;
D、全等图形,故本选项符合题意;
故选:D
【点睛】
本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.
9、C
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD的高相等,进一步求解即可.
【详解】
解:∵AD=DE,S△BDE=96,
∴S△ABD=S△BDE=96,
过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,
∵AD平分∠BAC,
∴DG=DF,
∴△ACD与△ABD的高相等,
又∵AB=3AC,
∴S△ACD=S△ABD=.
故选:C.
【点睛】
本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.
10、C
【分析】
根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.
【详解】
∵抛物线开口向上,
∴a>0,
∵抛物线与y轴的交点在y轴的负半轴上,
∴c<0,
∵抛物线的对称轴在y轴的右边,
∴b<0,
∴,
故①正确;
∵二次函数的图像与x轴交于点,
∴a-b+c=0,
根据对称轴的左侧,y随x的增大而减小,
当x=-2时,y>0即,
故②正确;
∵,
∴b= -2a,
∴3a+c=0,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴2a+c=2a-3a= -a<0,
故③正确;
根据题意,得,
∴,
解得,
故④错误;
∵=0,
∴,
∴y=向上平移1个单位,得y=+1,
∴为方程的两个根,且且.
故⑤正确;
故选C.
【点睛】
本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
二、填空题
1、15
【解析】
【分析】
通过表格即可求得最高和最低气温,12月3日的温差最大,最大温差为10-(-5)=15℃;
【详解】
解:12月1日的温差:
12月2日的温差:
12月3日的温差:
12月4日的温差:
12月5日的温差:
,
最大温差是15,
故答案为:15.
【点睛】
此题考查了正数与负数以及有理数的减法,熟练掌握运算法则是解本题的关键.
2、(-3,9)
【解析】
【分析】
设长方形纸片的长为x,宽为y,根据点B的坐标,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再结合点A的位置,即可得出点A的坐标.
【详解】
解:设长方形纸片的长为x,宽为y,
依题意,得:,
解得:,
∴x-y=3,x+2y=9,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴点A的坐标为(-3,6).
故答案为:(-3,9).
【点睛】
本题考查了二元一次方程组的应用以及坐标与图形性质,找准等量关系,正确列出二元一次方程组是解题的关键.
3、-2
【解析】
【分析】
将的值代入原式=计算可得.
【详解】
解:=
将代入,原式==-2
故答案为:-2
【点睛】
本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.
4、-1
【解析】
【分析】
根据有理数减法法则计算即可.
【详解】
解:,
故答案为:-1.
【点睛】
本题考查了有理数减法,解题关键是熟记有理数减法法则,准确计算.
5、或
【解析】
【分析】
根据勾股定理求出PE=3,设OH=x,可知,DH=(x-3)或(3- x),勾股定理列出方程,求出x值即可.
【详解】
解:如图所示,过点作直线的垂线,交m、n于点D、E,连接,
由作图可知,,,点到直线的距离为4个单位,即,
,
则,,
设OH=x,可知,DH=(3- x),
解得,,
;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
如图所示,过点作直线的垂线,交m、n于点D、E,连接,
由作图可知,,,点到直线的距离为4个单位,即,
,
则,,
设OH=x,可知,DH=(x-3),
解得,,
;
故答案为:或
【点睛】
本题考查了勾股定理和轴对称,解题关键是画出正确图形,会分类讨论,设未知数,根据勾股定理列方程.
三、解答题
1、110,AOC,角平分线的定义,55,AOB,15
【分析】
利用角的和差关系先求解 再利用角平分线的定义求解 最后利用角的和差可得答案.
【详解】
解:∵∠AOB=40°,∠BOC=70°,
∴∠AOC=∠AOB+∠BOC=110°.
∵OD平分∠AOC,
∴∠AOD=∠AOC( 角平分线的定义).
∴∠AOD=55°.
∴∠BOD=∠AOD﹣∠AOB.
∴∠BOD=15°.
故答案为:110,AOC,角平分线的定义,55,AOB,15
【点睛】
本题考查的是角平分线的定义,角的和差运算,理解题中的逻辑关系,熟练的运用角平分线与角的和差进行推理是解本题的关键.
2、(1)画图见解析,基本事实:两点确定一条直线;(2)画图见解析;(3)画图见解析;(4)画图见解析;(5)
【分析】
(1)直接过AB两点画直线即可;
(2)用量角器直接画图即可;
(3)以B为圆心,BA长度为半径画圆即可;
(4)用带刻度的直尺量出AD长度取中点即可;
(5)用量角器测量各个角度大小即可;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
(1)画图如下,基本事实:两点确定一条直线
(2)画图如下;
(3)画图如下;
(4)画图如下;
(5)不唯一,正确即可.
例如:,,等
或
【点睛】
本题考查线段和角度作图,熟练使用量角器、圆规和带刻度的直尺是解题的关键.
3、(1)见解析;(2)60°;(3)70或290
【分析】
(1)由可得,,,则;
(2)利用(1)中的结论可知,,则可得的度数为,由对顶角相等可得;
(3)结合(1)中的结论可得,注意需要讨论是钝角或是锐角时两种情况.
【详解】
解:(1)如图1,,
,,
,
.
(2)由(1)中探究可知,,
,且,
,
;
(3)如图,当为钝角时,
由(1)中结论可知,,
;
当为锐角时,如图,
由(1)中结论可知,,
即,
综上,或.
故答案为:70或290.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题主要考查平行线的性质与判定,难度适中,观察图形,推出角之间的和差关系是解题关键.
4、
(1)①见解析;②,理由见解析
(2)3或
【分析】
(1)①由旋转的性质得,,,根据相似的判定定理即可得证;
②由旋转和相似三角形的性质得,由得,故,代换即可得出结果;
(2)设,作于H,射线BE交线段AC于点F,则,由旋转可证,由相似三角形的性质得,即,由此可证,故,求得,分情况讨论:①当线段BE交AC于F时、当射线BE交AC于F时,根据相似比求出x的值,再根据勾股定理即可求出CF的长.
(1)
①∵将绕点C旋转得到,
∴,,,
∴,,
∴;
②,理由如下:
∵将绕点C旋转得到,
∴,
∵,,,
∴,
∵,
∴,
∴,
∴;
(2)
设,作于H,射线BE交线段AC于点F,则,
∵将绕点C旋转得到,
∴,,,
∴,,
∴,
∴,,即,
∵,
∴,
∴,
∵,,
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
①当线段BE交AC于F时,
解得,(舍),
∴,
②当射线BE交AC于F时,
解得(舍),,
∴,
综上,CF的长为3或.
【点睛】
本题考查相似三角形的判定与性质以及旋转的性质,掌握相似三角形的判定定理以及性质是解题的关键.
5、
(1)见解析
(2)见解析
【分析】
(1)利用已知条件证明即可;
(2)通过证明得出,再根据,得出结论.
(1)
证明:,,
,
,
,
,
,
;
(2)
证明,点是边上的中点,
,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
,
,
,
,
,
,
,
,
即.
【点睛】
本题考查了三角形相似的判定和性质以及直角三角形和等腰三角形的性质,解题的关键是掌握相似三角形的判定定理进行证明.
相关试卷
这是一份中考数学贵州省安顺市中考数学三模试题(含答案及详解),共27页。试卷主要包含了有理数 m,下列现象,下列运算正确的是等内容,欢迎下载使用。
这是一份中考数学贵州省安顺市中考数学模拟真题 (B)卷(含答案解析),共26页。试卷主要包含了有理数 m,一元二次方程的根为.,下列各式中,不是代数式的是等内容,欢迎下载使用。
这是一份中考数学贵州省安顺市中考数学第一次模拟试题(含答案解析),共29页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。