中考数学复习指导:面积法在几何解题中的应用
展开面积法不但可探索各种图形面积的等量关系,而且还可求解某些线段的长度、证明两角相等以及比例式等多种类型的题目.下面举例加以说明,
一、利用面积法求解垂线段的长度
例1 如图1,△ABC是等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F.若BC=2,则DE+DF=_______.
解 连结AD,由等边三角形的面积公式,得
二、利用面积法证明两角相等
例2 如图2,点C为线段AB上任意一点(不与A.B重合),分别以AC.BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角,且∠ACD=∠BCE.连结AE交CD于点M,连结BD交CE于点N,AE与BD交于点P,连结PC.
(1)求证:△ACE≌△DCB;
(2)请你判断△AMC与△DMP的形状有何关系并说明理由;
(3)求证:∠APC=∠BPC.
三、利用面积法得到线段成比例
例3 如图3,在△ABC中.CD是高,CE为∠ACB的平分线.若AC=15,BC=20,CD=12,则CE的长等于_______.
四、利用面积法证明两线平行
例4 如图4(1),已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
∴四边形CGHD为平行四边形,
∴AB∥CD.
利用上述预备知识,我们来证明以下的性质.
例5 如图5,点M、N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.证明:MN//EF.
五、利用面积法证明勾股定理
例6 勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积进行了证明.著名数学家华罗庚提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
请根据图6中直角三角形叙述勾股定理.以图6中的直角三角形为基础,可以构造出以a,b为底,以a+b为高的直角梯形(如图7).请你利用图7,验证勾股定理.
用面积法证题,重要的是善于根据题目特点,分析图形的面积关系,推出图形中线段、角之间的关系.
中考数学复习指导:例谈构造辅助圆解几何题: 这是一份中考数学复习指导:例谈构造辅助圆解几何题,共4页。试卷主要包含了通过辅助圆确定等腰三角形个数,通过辅助圆确定直角三角形个数,通过辅助圆求线段的取值范围等内容,欢迎下载使用。
中考数学复习指导:例谈勾股定理在图形翻折问题中的应用: 这是一份中考数学复习指导:例谈勾股定理在图形翻折问题中的应用,共5页。试卷主要包含了直接解题,间接解题等内容,欢迎下载使用。
中考数学复习指导:例谈“SAS”全等思想在解题中的应用: 这是一份中考数学复习指导:例谈“SAS”全等思想在解题中的应用,共6页。试卷主要包含了两个等腰三角形组合型,两正方形组合型,等腰三角形与正方形组合型,等边三角形与菱形组合型等内容,欢迎下载使用。