所属成套资源:高考理数一轮复习 考点一遍过(全国通用)
最新高考理数考点一遍过讲义 考点17 正、余弦定理及解三角形
展开
这是一份最新高考理数考点一遍过讲义 考点17 正、余弦定理及解三角形,共47页。学案主要包含了正弦定理,余弦定理,解三角形的实际应用等内容,欢迎下载使用。
课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。
2、精练习题
复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
3、加强审题的规范性
每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
4、重视错题
“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
专题17 正、余弦定理及解三角形
1.正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
2.应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.
一、正弦定理
1.正弦定理
在中,若角A,B,C对应的三边分别是a,b,c,则各边和它所对角的正弦的比相等,即.正弦定理对任意三角形都成立.
2.常见变形
(1)
(2)
(3)
(4)正弦定理的推广:,其中为的外接圆的半径.
3.解决的问题
(1)已知两角和任意一边,求其他的边和角;
(2)已知两边和其中一边的对角,求其他的边和角.
4.在中,已知,和时,三角形解的情况
二、余弦定理
1.余弦定理
三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即
2.余弦定理的推论
从余弦定理,可以得到它的推论:
.
3.解决的问题
(1)已知三边,求三个角;
(2)已知两边和它们的夹角,求第三边和其他两角.
4.利用余弦定理解三角形的步骤
三、解三角形的实际应用
1.三角形的面积公式
设的三边为a,b,c,对应的三个角分别为A,B,C,其面积为S.
(1) (h为BC边上的高);
(2);
(3)(为三角形的内切圆半径).
2.三角形的高的公式
hA=bsinC=csinB,hB=csinA=asinC,hC=asinB=bsinA.
3.测量中的术语
(1)仰角和俯角
在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).
(2)方位角
从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).
(3)方向角
相对于某一正方向的水平角.
①北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③);
②北偏西α,即由指北方向逆时针旋转α到达目标方向;
③南偏西等其他方向角类似.
(4)坡角与坡度
①坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角);
②坡度:坡面的铅直高度与水平长度之比(如图④,i为坡度).坡度又称为坡比.
4.解三角形实际应用题的步骤
考向一 利用正、余弦定理解三角形
利用正、余弦定理求边和角的方法:
(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.
(2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.
(3)在运算求解过程中注意三角恒等变换与三角形内角和定理的应用.
常见结论:
(1)三角形的内角和定理:在中,,其变式有:,等.
(2)三角形中的三角函数关系:
; ;
; .
典例1 在中,内角A,B,C所对的边分别为a,b,c,若bsin2A+3asinB=0,b=3c,则的值为
A.1 B.
C. D.
【答案】D
【解析】由bsin2A+3asinB=0,结合正弦定理,可得sinBsin2A+3sinAsinB=0,
即2sinBsinAcsA+3sinAsinB=0,
由于sinBsinA≠0,所以csA=−32,
因为0<A<π,所以A=5π6.
又b=3c,由余弦定理可得a2=b2+c2−2bccsA=3c2+c2+3c2=7c2,
即a2=7c2,所以ca=77.
故选D.
典例2 已知的内角A,B,C的对边分别为a,b,c,且asinA+bsinB+2bsinA=csinC.
(1)求C;
(2)若a=2,b=22,线段BC的垂直平分线交AB于点D,求CD的长.
【解析】(1)因为asinA+bsinB+2bsin A=csinC,所以a2+b2+2ab=c2.
由余弦定理得csC=a2+b2−c22ab =−22,
又0
相关学案
这是一份最新高考理数考点一遍过讲义 考点12 导数的应用,共38页。学案主要包含了导数与函数的单调性,利用导数研究函数的极值和最值,生活中的优化问题等内容,欢迎下载使用。
这是一份最新高考理数考点一遍过讲义 考点11 导数的概念及计算,共17页。学案主要包含了导数的概念,导数的几何意义,导数的计算等内容,欢迎下载使用。
这是一份最新高考理数考点一遍过讲义 考点09 函数与方程,共34页。学案主要包含了函数的零点,二分法等内容,欢迎下载使用。