终身会员
搜索
    上传资料 赚现金
    【冲刺名校之新高考题型模拟训练】专题27 数列大题综合(新高考通用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【冲刺985211名校之2023届新高考题型模拟训练】 专题27 数列大题综合 (新高考通用)原卷版.docx
    • 解析
      【冲刺985211名校之2023届新高考题型模拟训练】 专题27 数列大题综合 (新高考通用)解析版.docx
    【冲刺名校之新高考题型模拟训练】专题27 数列大题综合(新高考通用)01
    【冲刺名校之新高考题型模拟训练】专题27 数列大题综合(新高考通用)02
    【冲刺名校之新高考题型模拟训练】专题27 数列大题综合(新高考通用)03
    【冲刺名校之新高考题型模拟训练】专题27 数列大题综合(新高考通用)01
    【冲刺名校之新高考题型模拟训练】专题27 数列大题综合(新高考通用)02
    【冲刺名校之新高考题型模拟训练】专题27 数列大题综合(新高考通用)03
    还剩5页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【冲刺名校之新高考题型模拟训练】专题27 数列大题综合(新高考通用)

    展开
    这是一份【冲刺名校之新高考题型模拟训练】专题27 数列大题综合(新高考通用),文件包含冲刺985211名校之2023届新高考题型模拟训练专题27数列大题综合新高考通用原卷版docx、冲刺985211名校之2023届新高考题型模拟训练专题27数列大题综合新高考通用解析版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。

    高中特级教师用3句话来告诉你模拟考试有多么的重要!
    1、锻炼学生的心态。高考前的模拟考试能够帮助学校们适应考场,经过模拟考试试炼后,到高考时不会过于紧张,也能够帮助同学们树立良好的心态,增加自己的自信心。
    2、锻炼学生管理时间。通过模拟考试就会让同学们学会分配时间,时间过了多久就要完成哪部分题,学会取舍等,这些都是在模拟考试中得出来的,不至于高考时答不完题。
    3、熟悉题型和考场。模拟考试的形式是很接近高考的,能够让同学们提前感受到考场的气氛和考场的布局等,心理上感觉更加舒服。·西安工业经济老师考前叮咛:
    高考的取胜除了平时必要的学习外,还要有一定的答题技巧和良好心态。此外,通过模拟考试还能增强学生们面对高考的信心,希望考生们能够重视模拟考试。
    【冲刺985/211名校之2023届新高考题型模拟训练】
    专题27 数列大题综合 (新高考通用)
    一、解答题
    1.(2023·江苏南通·统考模拟预测)已知等差数列的首项为1,公差,其前n项和满足.
    (1)求公差d;
    (2)是否存在正整数m,k使得.
    2.(2022秋·广东·高三校联考阶段练习)已知数列满足,.
    (1)证明:是等比数列;
    (2)设,求数列的前项和.
    3.(2023秋·广东揭阳·高三统考期末)已知数列满足,是以1为首项,2为公比的等比数列.
    (1)求的通项公式;
    (2)求数列的前n项和.
    4.(2023春·江苏南京·高三南京师大附中校考开学考试)已知数列{}满足
    (1)求数列{}的通项公式;
    (2)设,数列{}的前n项和为Tn,若,求m.
    5.(2022秋·江苏南京·高三校考期末)已知等差数列和等比数列满足,.
    (1)求数列,通项公式
    (2)设数列中满足,求和
    6.(2023春·江苏南通·高三校考开学考试)已知数列的各项均为正数,其前n项和满足,n∈N*.
    (1)证明:数列是等比数列;
    (2)若对任意n∈N*恒成立,求a1.
    7.(2023秋·江苏·高三统考期末)已知数列满足.
    (1)判断数列是否是等比数列,并求的通项公式;
    (2)若,求数列的前项和.
    8.(2023·江苏连云港·统考模拟预测)已知数列的前n项和为,且.
    (1)证明:数列是等差数列;
    (2)设数列的前n项积为,若,求数列的通项公式.
    9.(2023秋·浙江宁波·高三期末)已知数列满足,且.
    (1)若是等比数列,且,求的值,并写出数列的通项公式;
    (2)若是等差数列,公差,且,求证:.
    10.(2023秋·辽宁葫芦岛·高三统考期末)已知数列满足,,数列为等比数列且公比,满足.
    (1)求数列的通项公式;
    (2)数列的前n项和为,若________,记数列满足,求数列的前项和.
    在①,②,,成等差数列,③这三个条件中任选一个补充在第(2)问中,并对其求解.
    注:若选择多个条件分别解答,按第一个解答计分.
    11.(2023·福建厦门·统考二模)记等差数列的公差为,前项和为;等比数列的公比为,前项和为,已知,,.
    (1)求和;
    (2)若,,求的前项和.
    12.(2023·福建福州·统考二模)欧拉函数(n)(n∈)的函数值等于所有不超过正整数n,且与n互质的正整数的个数,例如:(1)=1,(4)=2.
    (1)求,;
    (2)令,求数列的前n项和.
    13.(2022秋·河北保定·高三河北省唐县第一中学校考期中)设等差数列的前n项和为,.数列{bn}满足:对每个成等比数列.
    (1)求数列的通项公式;
    (2)记,n∈N*,证明:,n∈N*.
    14.(2023·河北唐山·统考一模)已知数列的前项和为,满足.
    (1)求;
    (2)令,证明:,.
    15.(2023春·山东济南·高三统考开学考试)各项均为正数的数列,其前n项和记为,且满足对,都有.
    (1)求数列的通项公式;
    (2)设,证明:.
    16.(2023秋·山东泰安·高三统考期末)已知数列的前n项和为,,且().
    (1)求的通项公式;
    (2)若,数列的前n项和为,求证:.
    17.(2023·山东济宁·统考一模)已知数列的前项和为,且满足:.
    (1)求证:数列为常数列;
    (2)设,求.
    18.(2023春·湖北·高三统考阶段练习)已知数列的首项,且满足.
    (1)求证:数列为等比数列
    (2)设数列满足,求最小的实数,使得对一切正整数均成立.
    19.(2023春·湖北·高三校联考阶段练习)已知等比数列的各项均为正数,的前项和为,且.
    (1)求的通项公式;
    (2)设,记的前项和为,证明:.
    20.(2023·湖北·统考模拟预测)设数列的前n项和为.已知,,.
    (1)求证:数列是等差数列;
    (2)设数列的前n项和为,且,令,求数列的前n项和.
    21.(2023春·湖南长沙·高三长郡中学校考阶段练习)已知数列满足,,.
    (1)证明:是等比数列
    (2)求数列的前2n项和.
    22.(2023春·湖南长沙·高三雅礼中学校考阶段练习)各项不为0的数列满足,且.
    (1)求证:数列为等差数列;
    (2)若对任意恒成立,求实数的取值范围.
    23.(2023春·湖南株洲·高三株洲二中校考阶段练习)数列满足.
    (1)求的通项公式;
    (2)设,数列的前n项和为.若对于任意正整数n,均有恒成立,求m的最小值.
    24.(2023·湖南邵阳·统考二模)已知为数列的前项和,,,记.
    (1)求数列的通项公式;
    (2)已知,记数列的前项和为,求证:.
    25.(2023·湖南·模拟预测)已知正项数列的前n项和为,且满足,.
    (1)求数列的通项公式及前n项和;
    (2)设数列满足,.求数列的通项公式.
    26.(2023春·广东·高三校联考阶段练习)已知各项均为正数的数列满足,,,.
    (1)当时,求数列的通项公式;
    (2)若,求数列的前项和.
    27.(2023春·广东·高三统考开学考试)已知数列和满足,,,.
    (1)求的通项公式;
    (2)令,求数列的前项和
    28.(2023·广东茂名·统考一模)已知为数列的前n项和,,.
    (1)求数列的通项公式:
    (2)若,为数列的前n项和.求,并证明:.
    29.(2023春·广东·高三校联考阶段练习)已知数列,时,.
    (1)求数列的通项公式;
    (2)为各项非零的等差数列,其前项和为,已知,求数列的前项和.
    30.(2023·江苏南京·校考一模)已知等比数列的前项和为,,.
    (1)求数列的通项公式.
    (2)令,求数列的前项和.
    相关试卷

    【冲刺名校之新高考题型模拟训练】专题24 导数的综合问题 多选题(新高考通用): 这是一份【冲刺名校之新高考题型模拟训练】专题24 导数的综合问题 多选题(新高考通用),文件包含冲刺985211名校之2023届新高考题型模拟训练专题24导数的综合问题多选题新高考通用原卷版docx、冲刺985211名校之2023届新高考题型模拟训练专题24导数的综合问题多选题新高考通用解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。

    【冲刺名校之新高考题型模拟训练】专题23 导数的综合问题(单选+填空)(新高考通用): 这是一份【冲刺名校之新高考题型模拟训练】专题23 导数的综合问题(单选+填空)(新高考通用),文件包含冲刺985211名校之2023届新高考题型模拟训练专题23导数的综合问题单选+填空新高考通用原卷版docx、冲刺985211名校之2023届新高考题型模拟训练专题23导数的综合问题单选+填空新高考通用解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    【冲刺名校之新高考题型模拟训练】专题09 球体综合问题 小题综合(新高考通用): 这是一份【冲刺名校之新高考题型模拟训练】专题09 球体综合问题 小题综合(新高考通用),文件包含冲刺985211名校之2023届新高考题型模拟训练专题09球体综合问题小题综合新高考通用原卷版docx、冲刺985211名校之2023届新高考题型模拟训练专题09球体综合问题小题综合新高考通用解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map