所属成套资源:2024年沪科版七年级数学下册课件整册
- 2024春七下数学第7章一元一次不等式与不等式组集训课堂练素养2确定不等式组中字母的值或取值范围的方法课件(沪科版) 课件 0 次下载
- 2024春七下数学第7章一元一次不等式与不等式组集训课堂测素质一元一次不等式课件(沪科版) 课件 0 次下载
- 2024春七下数学第7章一元一次不等式与不等式组7.2一元一次不等式第3课时一元一次不等式的实际应用课件(沪科版) 课件 0 次下载
- 2024春七下数学第7章一元一次不等式与不等式组7.2一元一次不等式第1课时一元一次不等式及解不含分母的不等式课件(沪科版) 课件 0 次下载
- 2024春七下数学第7章一元一次不等式与不等式组7.2一元一次不等式第2课时解含分母的一元一次不等式课件(沪科版) 课件 0 次下载
七年级下册7.1 不等式及其基本性质备课ppt课件
展开这是一份七年级下册7.1 不等式及其基本性质备课ppt课件,共28页。PPT课件主要包含了答案呈现等内容,欢迎下载使用。
不等式基本性质是对不等式进行变形的重要依据,是学 习不等式的基础.它与等式性质既有联系,又有区别,注意总 结比较.运用不等式基本性质对不等式进行变形,要特别注意 基本性质2和基本性质3的区别.
知识点1 不等式的基本性质11.若a>b,则( C )
2.由a-3<b+1,可得结论( C )
3.(母题:教材P31练习T4)设“ ”“ ”“ ”表示三种不同 的物体,现用天平称了两次,情况如图所示,那么 “ ”“ ”“ ”这三种物体的质量按从大到小的顺序排列 应为( B )
知识点2 不等式的基本性质24.若3x>-3y,则下列不等式中一定成立的是( A )
知识点3 不等式的基本性质36.[2023·德阳]如果a>b,那么下列运算正确的是( D )
7.[2023·北京]已知a-1>0,则下列结论正确的是( B )
因为a-1>0,所以a>1,所以-a<-1,
所以-a<-1<1<a.故选B.
因为a>b,所以当a>0时,a2>ab;
当a=0时,a2=ab;
当a<0时,a2<ab,故结论①错误;
因为a>b,所以a+b>2b,故结论②错误;
因为a>b,所以当|a|>|b|时,a2>b2,
当|a|≤|b|时,a2≤b2,故结论③错误;
因为a>b,b>0,所以a>b>0,
知识点4 不等式的基本性质4、基本性质59.(母题:教材P27习题T3)若2x>y,则y 2x.(填“>” 或“<”)
10.a,b,c分别表示三种物体的质量,用天平称两次,情况 如图所示,则下列判断正确的是( C )
11.[2022·安庆期中]四个小朋友玩跷跷板,他们的体重分别为 P,Q,R,S,如图所示,他们的体重大小关系是( D )
易错点 除以字母系数时,未对字母的取值进行分类讨论 而出错12.小明说a>2a永远不可能成立,因为在不等式两边都除以 a,得到1>2这个错误结论,小明的说法正确吗?请说明 理由.
【解】小明的说法不正确.理由如下:小明默认为a>0, 未对a的取值范围进行分类讨论.当a>0时,由1<2得a<2a;当a=0时,a=2a;当a<0 时,由1<2得a>2a.故小明的说法不正确.
利用不等式的基本性质探求字母的取值范围
【解】由已知得1-a<0,即a>1,则|a-1|+|a+2|=a-1+a+2=2a+1.
利用特定的不等式性质探究大小
14.[新考法 分类讨论法]现有不等式的性质:①不等式的两边都加上(或减去)同一个数或同一个整式, 不等号的方向不变;②不等式的两边都乘以(或除以)同一个正数,不等式的方 向不变;③不等式的两边都乘以(或除以)同一个负数,不等式的方 向改变.
请解决以下两个问题:(1)利用性质①比较2a与a的大小(a≠0);
【解】当a>0时,在a>0的两边同时加上a,得a+a> 0+a,即2a>a;当a<0时,在a<0的两边同时加上a,得a+a<0+a,即2a<a.
(2)利用性质②比较2a与a的大小(a≠0).
【解】当a>0时,由2>1,得2·a>1·a,即2a>a;当a<0时,由2>1,得2·a<1·a,即2a<a.
利用不等式解集的关系求字母的值
15.如果关于x的不等式4x-3a>-1与不等式2(x-1)+3>5 的解集相同,请根据下面两名同学的提示求a的值.
利用不等式的基本性质探求整式的范围
16. [新考法 阅读类比法] [提出问题]已知x-y=2,且x>1, y<0,试确定x+y的取值范围.[分析问题]先根据已知条件用y表示x,再根据题中已知x 的取值范围,构建y的不等式,从而确定y的取值范围,同 理再确定x的取值范围,最后利用不等式的性质即可解决 问题.
[解决问题]解:因为x-y=2,所以x=y+2.因为x>1,所以y+2>1.所以y>-1.因为y<0,所以-1<y<0.①同理,得1<x<2.②由①+②,得-1+1<y+x<0+2,所以x+y的取值范围是0<x+y<2.
[尝试应用](1)已知x-y=-3,且x<-1,y>1,求x+y的取 值范围;
【解】因为x-y=-3,所以x=y-3.因为x<-1,所以y-3<-1,所以y<2.又因为y>1,所以1<y<2.①同理,得-2<x<-1.②①+②,得1+(-2)<x+y<2+(-1),所以x+y的取值范围是-1<x+y<1.
相关课件
这是一份沪科版七年级下册7.2 一元一次不等式课文内容ppt课件,共29页。PPT课件主要包含了答案呈现,故选D,a<4,x>4等内容,欢迎下载使用。
这是一份初中数学7.3 一元一次不等式组集体备课ppt课件,共18页。PPT课件主要包含了答案呈现,习题链接,把字母系数当已知,数来解,a<6,-3≤a<-2等内容,欢迎下载使用。
这是一份初中沪科版7.1 不等式及其基本性质课文内容ppt课件,共12页。PPT课件主要包含了答案呈现等内容,欢迎下载使用。