备战中考数学《重难点解读•专项训练》专题02 二次函数与将军饮马最值问题(专项训练)
展开一、复习方法
1.以专题复习为主。 2.重视方法思维的训练。
3.拓宽思维的广度,培养多角度、多维度思考问题的习惯。
二、复习难点
1.专题的选择要准,安排时间要合理。 2.专项复习要以题带知识。
3.在复习的过程中要兼顾基础,在此基础上适当增加变式和难度,提高能力。
专题02 二次函数与将军饮马最值问题(专项训练)
1.(黑龙江二模)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
2.(2022•宁远县模拟)如图,抛物线y=x2+bx+c与x轴交于A,B两点,其中点A的坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
3.(2022•乐业县二模)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,直线l与抛物线交于A、C两点,其中点C的横坐标是2.
(1)求抛物线的函数表达式;
(2)在抛物线的对称轴上找一点P,使得△PBC的周长最小,并求出点P的坐标;
4.(2022•江阴市校级一模)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A(﹣1,0)、B(3,0)两点,与y轴相交于点C(0,3).
(1)求出这条抛物线的解析式及顶点M的坐标;
(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;
5.(2022秋•黄冈月考)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,y与轴交于点C,抛物线的对称轴交x轴于点D.已知A(﹣1,0),C(0,3).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点M,使得|MB﹣MC|的值最大,求此点M的坐标;
6.(2022•常德)如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.
(1)求此抛物线的解析式;
(2)当△OAB的面积为15时,求B的坐标;
(3)在(2)的条件下,P是抛物线上的动点,当PA﹣PB的值最大时,求P的坐标以及PA﹣PB的最大值.
7.(2022春•良庆区校级期末)如图,已知抛物线的解析式为y=﹣x2﹣x+3,抛物线与x轴交于点A和点B,与y轴交点于点C.
(1)请分别求出点A、B、C的坐标和抛物线的对称轴;
(2)连接AC、BC,将△ABC绕点B顺时针旋转90°,点A、C的对应点分别为M、N,求点M、N的坐标;
(3)若点P为该抛物线上一动点,在(2)的条件下,请求出使|NP﹣BP|最大时点P的坐标,并请直接写出|NP﹣BP|的最大值.
备战中考数学《重难点解读•专项训练》专题02 线圆最值(专项训练): 这是一份备战中考数学《重难点解读•专项训练》专题02 线圆最值(专项训练),文件包含专题02线圆最值专项训练原卷版docx、专题02线圆最值专项训练解析版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
专题64 将军饮马模型与最值问题-中考数学重难点专项突破(全国通用): 这是一份专题64 将军饮马模型与最值问题-中考数学重难点专项突破(全国通用),文件包含专题64将军饮马模型与最值问题原卷版docx、专题64将军饮马模型与最值问题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
2024年中考数学专题训练 专题02 二次函数与将军饮马最值问题(知识解读): 这是一份2024年中考数学专题训练 专题02 二次函数与将军饮马最值问题(知识解读),共14页。