备战中考数学《重难点解读•专项训练》专题11 利用垂线段最短求最值(三大类型含“胡不归”)(专项训练)
展开一、复习方法
1.以专题复习为主。 2.重视方法思维的训练。
3.拓宽思维的广度,培养多角度、多维度思考问题的习惯。
二、复习难点
1.专题的选择要准,安排时间要合理。 2.专项复习要以题带知识。
3.在复习的过程中要兼顾基础,在此基础上适当增加变式和难度,提高能力。
专题11 利用垂线段最短求最值(三大类型含“胡不归”)
(专项训练)
1.如图,河道l的同侧有A,B两个村庄,计划铺设一条管道将河水引至A,B两地,下面的
四个方案中,管道长度最短的是( )
A.B.
C.D.
2.如图,点A为直线BC外一点,且AC⊥BC于点C,AC=4,点P是直线BC上的动点,则线段AP长不可能是( )
A.3B.4C.5D.6
3.体育课上,老师测量跳远成绩的依据是( )
A.平行线间的距离相等B.两点之间,线段最短
C.垂线段最短D.两点确定一条直线
4.如图,设点P是直线l外一点,PQ⊥l,垂足为点Q,点T是直线l上的一个动点,连结PT,则( )
A.PT≥2PQB.PT≤2PQC.PT≥PQD.PT≤PQ
5.如图,在△ABC中,∠ACB=90°,AC=BC=4,点D是BC边的中点,点P是AC边上一个动点,连接PD,以PD为边在PD的下方作等边三角形PDQ,连接CQ.则CQ的最小值是( )
A.B.1C.D.
6.如图,△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,P为直线AB上一动点,连接PC,则线段PC的最小值是( )
A.4B.4.5C.4.8D.5
7.如图,菱形ABCD的对角线AC,BD相交于点O,点P为AB边上一动点(不与点A,B重合),PE⊥OA于点E,PF⊥OB于点F.若AC=20,BD=10,则EF的最小值为( )
A.B.C.4D.
8.如图,在矩形ABCD中,为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,则PQ的最小值为( )
A.B.C.D.
9.已知:Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF的最小值是 .
10.如图,E,F是菱形ABCD的边AB,AD的中点,P是菱形的对角线BD上的动点,若BD=8,AC=10,则PE+PF的最小值是 .
11.如图,正方形ABCD的边长为5,E为AD的中点,P为CE上一动点,则AP+BP的最小值为 .
12.如图,点P为矩形ABCD的对角线AC上一动点,点E为BC的中点,连接PE,PB,若AB=4,BC=4,则PE+PB的最小值为 .
13.如图,在矩形ABCD中,AB=5,BC=4,E、F分别是AD、BC的中点,点P、Q在EF上.且满足PQ=2,则四边形APQB周长的最小值为 .
14.如图,正方形ABCD的边长为6,点E,F分别为边BC,CD上两点,CF=BE,AE平分∠BAC,连接BF,分别交AE,AC于点G,M,点P是线段AG上的一个动点,过点P作PN⊥AC,垂足为N,连接PM,则PM+PN的最小值为 .
15.如图,在矩形ABCD中,AB=6,BC=8,点P为矩形内一点,满足∠ABP=∠BCP.(1)若点E为AD的中点,B,P,E在同一条直线上,则BP的长为 ;
(2)若E为AD上一动点,则BE+PE的最小值为 .
16.如图,在▱ABCD中,AB=6,BC=8,∠ABC=60°,P是▱ABCD内一动点,且S△PBC=S△PAD,则PA+PD的最小值为 .
17.如图,在矩形ABCD中,AB=4,AD=6,点E是AB所在直线的一个动点,点F是对角线AC上的动点,且AE=CF,则BF+CE的最小值为 .
18.如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点(点Q在点P的右边).
①若连结AP、PE,则PE+AP的最小值为 ;
②连结QE,若PQ=3,当CQ= 时,四边形APQE的周长最小.
备战中考数学《重难点解读•专项训练》专题12 两之间线段最短求最值(四大类型含将军饮马)(能力提升): 这是一份备战中考数学《重难点解读•专项训练》专题12 两之间线段最短求最值(四大类型含将军饮马)(能力提升),文件包含专题12两之间线段最短求最值四大类型含将军饮马能力提升原卷版docx、专题12两之间线段最短求最值四大类型含将军饮马能力提升解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
2024年中考数学专题训练 专题11 利用垂线段最短求最值(三大类型含“胡不归”)(知识解读): 这是一份2024年中考数学专题训练 专题11 利用垂线段最短求最值(三大类型含“胡不归”)(知识解读),共18页。
2024年中考数学专题训练 专题11 利用垂线段最短求最值(三大类型含“胡不归”)(专项训练)(原卷版+解析): 这是一份2024年中考数学专题训练 专题11 利用垂线段最短求最值(三大类型含“胡不归”)(专项训练)(原卷版+解析),共21页。试卷主要包含了已知等内容,欢迎下载使用。