- 专题04 分式与分式方程(共63题)-学易金卷:5年(2019-2023)中考1年模拟数学真题分项汇编(北京专用) 试卷 1 次下载
- 专题05 二次根式(共20题)-学易金卷:5年(2019-2023)中考1年模拟数学真题分项汇编(北京专用) 试卷 1 次下载
- 专题07 一元二次方程及其应用(共54题)-学易金卷:5年(2019-2023)中考1年模拟数学真题分项汇编(北京专用) 试卷 1 次下载
- 专题08 不等式(组)及应用(共49题)-学易金卷:5年(2019-2023)中考1年模拟数学真题分项汇编(北京专用) 试卷 1 次下载
- 专题09 一次函数及其应用(共35题)-学易金卷:5年(2019-2023)中考1年模拟数学真题分项汇编(北京专用) 试卷 4 次下载
专题06 一次方程(组)及其应用(共19题)-学易金卷:5年(2019-2023)中考1年模拟数学真题分项汇编(北京专用)
展开1.(2023·北京门头沟·二模)方程组的解为( )
A.B.C.D.
2.(2023·北京丰台·二模)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,索和竿子各几何?(1托为5尺)其大意为:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺,如果将绳索对折后再去量竿,就比竿短5尺,那么绳索和竿各长几尺?设绳索长为x尺,竿长为y尺,根据题意列方程组,正确的是( )
A.B.C.D.
二、填空题
3.(2023·北京延庆·统考一模)方程组的解为 .
4.(2023·北京·统考二模)方程组的解为 .
5.(2023·北京朝阳·清华附中校考模拟预测)甲、乙二人分别从相距的A,B两地出发,相向而行.右上图是小华绘制的甲、乙二人两次运动的情形,设甲的速度是,乙的速度是,根据题意可列的方程组是 .
6.(2023·北京石景山·统考一模)方程组的解为 .
7.(2021·北京·统考中考真题)某企业有两条加工相同原材料的生产线.在一天内,生产线共加工吨原材料,加工时间为小时;在一天内,生产线共加工吨原材料,加工时间为小时.第一天,该企业将5吨原材料分配到两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到生产线的吨数与分配到生产线的吨数的比为 .第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给生产线分配了吨原材料,给生产线分配了吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则的值为 .
8.(2023·北京西城·校考模拟预测)中国古代数学著作《算法统宗》记载了这样一个题目:九百九十文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:九百九十文钱共买一千个苦果和甜果,其中四文钱可买苦果七个,十一文钱可买甜果九个.问苦、甜果各几个?设苦果x个,甜果y个;则可列方程为 .
9.(2023·北京·校联考模拟预测)二元一次方程组的解为 .
10.(2023·北京大兴·统考二模)方程组的解是 .
11.(2023·北京海淀·校考一模)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,它的代数成就主要包括开放术、正负术和方程术,其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有五雀、六燕集称之衡,雀俱重,燕俱轻,一雀一燕交而处,衡适平,并雀、燕重一斤,问雀、燕一枚各重几何?”.
译文:“今有5只雀、6只燕,分别聚集而用衡器称之,聚在一起的雀重,燕轻,将1只雀、1只燕交换位置而放,重量相等,5只雀、6只燕重量为1斤,问雀、燕1只各重多少?”设每只雀重x斤,每只燕中y斤,可列方程组为 .
12.(2023·北京顺义·统考一模)某京郊民宿有二人间、三人间、四人间三种客房供游客住宿,某旅游团有25位女士游客准备同时住这三种客房共8间,如果每间客房都要住满,请写出一种住宿方案 ;如果二人间、三人间、四人间三种客房的收费标准分别为300元/间、360元/间、400元/间,则最优惠的住宿方案是 .
13.(2023·北京西城·北师大实验中学校考模拟预测)小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行,小明每小时骑行,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为,依题意,可列方程为 .
14.(2023·北京·统考一模)某工厂用甲、乙两种原料制作,,三种型号的工艺品,三种型号工艺品的重量及所含甲、乙两种原料的重量如下:
现要用甲、乙两种原料共,制作5个工艺品,且每种型号至少制作1个.
(1)若原料恰好全部用完,则制作型工艺品的个数为 个;
(2)若使用甲种原料不超过,同时使用乙种原料最多,则制作方案中,,三种型号的工艺品的个数依次为 .
15.(2023·北京海淀·清华附中校考一模)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为元,足球的单价为元,依题意,可列方程组为 .
16.(2023·北京西城·北京育才学校校考模拟预测)盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个,其中A盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱:B盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为;C盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.则B盒中蓝牙耳机、多接口优盘、迷你音箱共 个.经核算,A盒的成本为145元,B盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C盒的成本为 元.
17.(2023·北京平谷·统考二模)如图所示,某工厂生产镂空的铝板雕花造型,造型由A(绣球花)、B(祥云)两种图案组合而成,因制作工艺不同,A、B两种图案成本不同,厂家提供了如下几种设计造型,造型1的成本64元,造型2的成本42元,则造型3的成本为 元;若王先生选定了一个造型1作为中心图形,6个造型2分别位于中心图形的四周,其余部分用个造型3填补空缺,若整个画面中,图案B个数不多于图案A数的2倍,且王先生的整体设计费用不超过500元,写出一个满足条件的值 .
三、解答题
18.(2023·北京东城·统考二模)解方程组:.
19.(2023·北京·统考中考真题)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一幅对联,对联的长为,宽为.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)
工艺品型号
含甲种原料的重量
含乙种原料的重量
工艺品的重量
A
3
4
7
B
3
2
5
C
2
3
5
专题08 不等式(组)及应用(共49题)-学易金卷:5年(2019-2023)中考1年模拟数学真题分项汇编(北京专用): 这是一份专题08 不等式(组)及应用(共49题)-学易金卷:5年(2019-2023)中考1年模拟数学真题分项汇编(北京专用),文件包含专题08不等式组及应用共49题原卷版docx、专题08不等式组及应用共49题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
专题07 一元二次方程及其应用(共54题)-学易金卷:5年(2019-2023)中考1年模拟数学真题分项汇编(北京专用): 这是一份专题07 一元二次方程及其应用(共54题)-学易金卷:5年(2019-2023)中考1年模拟数学真题分项汇编(北京专用),文件包含专题07一元二次方程及其应用共54题原卷版docx、专题07一元二次方程及其应用共54题解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
专题06 一次方程(组)及其应用(共22题)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题06 一次方程(组)及其应用(共22题)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题06一次方程组及其应用共22题原卷版docx、专题06一次方程组及其应用共22题解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。