所属成套资源:中考数学模拟试卷及答案分析(25份试卷)
【中考专题】湖南省益阳市中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解)
展开
这是一份【中考专题】湖南省益阳市中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解),共24页。试卷主要包含了单项式的次数是,下列图标中,轴对称图形的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、不等式的最小整数解是( )
A.B.3C.4D.5
2、下面的图形中,是轴对称图形但不是中心对称图形的是( )
A.B.C.D.
3、下列方程中,解为的方程是( )
A.B.C.D.
4、单项式的次数是( )
A.1B.2C.3D.4
5、下列图标中,轴对称图形的是( )
A.B.C.D.
6、为了完成下列任务,你认为最适合采用普查的是( )
A.了解某品牌电视的使用寿命B.了解一批西瓜是否甜
C.了解某批次烟花爆竹的燃放效果D.了解某隔离小区居民新冠核酸检查结果
7、有理数a,b在数轴上对应的位置如图所示,则下列结论正确的是( ).
A.B.C.D.
8、下列几何体中,截面不可能是长方形的是( )
A.长方体B.圆柱体
C.球体D.三棱柱
9、2021年10月16日,中国神舟十三号载人飞船的长征二号F遥十三运载火箭在中国酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭成功分离,进入预定轨道,截至2021年11月2日,“神舟十三号”载人飞船已在轨飞行18天,距离地球约63800000千米,用科学记数法表示63800000为( )
A.B.C.D.
10、北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
二、填空题(5小题,每小题4分,共计20分)
1、下面给出了用三角尺画一个圆的切线的步骤示意图,但顺序需要进行调整,正确的画图步骤是________.
2、一张长方形纸片沿直线折成如图所示图案,已知,则__.
3、如图,在△ABC中,CD⊥AB,垂足为D,CE为△ACD的角平分线. 若CD=8,BC=10,且△BCE的面积为32,则点E到直线AC的距离为________.
4、如图,射线,相交于点,则的内错角是__.
5、若代数式的值是3,则多项式的值是______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,点A在的一边OA上.按要求画图并填空.
(1)过点A画直线,与的另一边相交于点B;
(2)过点A画OB的垂线AC,垂足为点C;
(3)过点C画直线,交直线AB于点D;
(4)直接写出______°;
(5)如果,,,那么点A到直线OB的距离为______.
2、计算:(﹣3a2)3+(4a3)2﹣a2•a4.
3、已知:在平面直角坐标系中,点O为坐标原点,和关于y轴对称,且,
(1)如图1,求的度数;
(2)如图2,点P为线段延长线上一点,交x轴于点D,设,点P的横坐标为d,求d与t之间的数量关系;
(3)如图3,在(2)的条件下,点E为x轴上一点,连接交y轴于点F,且,,在的延长线上取一点Q,使,求点Q的横坐标.
4、某商店用3700元购进A、B两种玻璃保温杯共80个,这两种玻璃保温杯的进价、标价如下表所示:
(1)这两种玻璃保温杯各购进多少个?
(2)已知A型玻璃保温杯按标价的8折出售,B型玻璃保温杯按标价的7.5折出售.在运输过程中有2个A型和1个B型玻璃保温杯不慎损坏,不能销售,请问在其它玻璃保温杯全部售出的情况下,该商店共获利多少元?
5、已知四边形 是菱形, , 点 在射线 上, 点 在射线 上,且 .
(1)如图, 如果 , 求证: ;
(2)如图, 当点 在 的延长线上时, 如果 , 设 , 试建立 与 的函数关系式,并写出 的取值范围
(3)联结 , 当 是等腰三角形时,请直接写出 的长.
-参考答案-
一、单选题
1、C
【分析】
先求出不等式解集,即可求解.
【详解】
解:
解得:
所以不等式的最小整数解是4.
故选:C.
【点睛】
本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.
2、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;
B、不是轴对称图形,是中心对称图形,故此选项不符合题意;
C、不是轴对称图形,是中心对称图形,故此选项不符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
D、是轴对称图形,不是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、D
【分析】
求出选项各方程的解即可.
【详解】
A、,解得:,不符合题意.
B、,解得:,不符合题意.
C、,解得:,不符合题意.
D、,解得:,符合题意.
故选:D .
【点睛】
此题考查的知识点是一元一次方程的解,关键是分别求出各方程的解.
4、C
【分析】
单项式中所有字母的指数和是单项式的次数,根据概念直接作答即可.
【详解】
解:单项式的次数是3,
故选C
【点睛】
本题考查的是单项式的次数的含义,掌握“单项式中所有字母的指数和是单项式的次数”是解本题的关键.
5、A
【详解】
解:A、是轴对称图形,故本选项符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、不是轴对称图形,故本选项不符合题意;
D、不是轴对称图形,故本选项不符合题意;
故选:A
【点睛】
本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
6、D
【分析】
普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.
故选:D.
【点睛】
本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
7、D
【分析】
先根据数轴可得,再根据有理数的减法法则、绝对值性质逐项判断即可得.
【详解】
解:由数轴的性质得:.
A、,则此项错误;
B、,则此项错误;
C、,则此项错误;
D、,则此项正确;
故选:D.
【点睛】
本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.
8、C
【分析】
根据长方体、圆柱体、球体、三棱柱的特征,找到用一个平面截一个几何体得到的形状不是长方形的几何体解答即可.
【详解】
解:长方体、圆柱体、三棱柱的截面都可能出现长方形,只有球体的截面只与圆有关,
故选:C.
【点睛】
此题考查了截立体图形,正确掌握各几何体的特征是解题的关键.
9、B
【分析】
科学记数法的表示形式为的形式,其中,n为整数;确定n的值时,要把原数变成a,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数的绝对值大于10时,n为正整数,当原数的绝对值小于1时,n为负整数.
【详解】
故选:B
【点睛】
本题考查了科学记数法的表示方法;科学记数法的表示形式为的形式,其中,n为整数,熟练地掌握科学记数法的表示方法是解本题的关键.
10、C
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:12000
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选C
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
二、填空题
1、②③④①
【解析】
【分析】
先根据直径所对的圆周角是直角确定圆的一条直径,然后根据圆的一条切线与切点所在的直径垂直,进行求解即可.
【详解】
解:第一步:先根据直径所对的圆周角是直角,确定圆的一条直径与圆的交点,即图②,
第二步:画出圆的一条直径,即画图③;
第三边:根据切线的判定可知,圆的一条切线与切点所在的直径垂直,确定切点的位置从而画出切线,即先图④再图①,
故答案为:②③④①.
【点睛】
本题主要考查了直径所对的圆周角是直角,切线的判定,熟知相关知识是解题的关键.
2、##65度
【解析】
【分析】
根据折叠的性质可得出,代入的度数即可得出答案.
【详解】
解:由折叠可得出,
,
,
故答案为:.
【点睛】
本题考查了翻折变换的性质,熟练掌握翻折变换的性质是解题的关键.
3、2
【解析】
【分析】
过点E作EF⊥AC于点F,根据角平分线的性质定理可得DE=EF,再由勾股定理可得BD=6,然后根据△BCE的面积为32,可得BE=8,即可求解.
【详解】
解:如图,过点E作EF⊥AC于点F,
∵CE为△ACD的角平分线.CD⊥AB,
∴DE=EF,
在 中,CD=8,BC=10,
∴ ,
∵△BCE的面积为32,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴ ,
∴BE=8,
∴EF=DE=BE-BD=2,
即点E到直线AC的距离为2.
故答案为:2
【点睛】
本题主要考查了角平分线的性质定理,勾股定理,熟练掌握角平分线的性质定理,勾股定理是解题的关键.
4、##∠BAE
【解析】
【分析】
根据内错角的意义,结合具体的图形进行判断即可.
【详解】
解:由内错角的意义可得,与是内错角,
故答案为:.
【点睛】
本题考查内错角,掌握内错角的意义是正确解答的前提.
5、1
【解析】
【分析】
先观察,再由已知求出6a-3b=9,然后整体代入求解即可.
【详解】
解:∵2a-b=3,
∴6a-3b=9,
∴6a-(3b+8)=(6a-3b)-8=9-8=1,
故答案为:1.
【点睛】
本题考查代数式求值、整式的加减,利用整体代入求解是解答的关键.
三、解答题
1、(1)图见解析;(2)图见解析;(3)图见解析;(4)90;(5).
【分析】
(1)根据垂线的画法即可得;
(2)根据垂线的画法即可得;
(3)根据平行线的画法即可得;
(4)根据平行线的性质可得;
(5)利用三角形的面积公式即可得.
【详解】
解:(1)如图,直线即为所求;
(2)如图,垂线即为所求;
(3)如图,直线即为所求;
(4),
,
,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:90;
(5),
,即,
解得,
即点到直线的距离为,
故答案为:.
【点睛】
本题考查了画垂线和平行线、平行线的性质、点到直线的距离等知识点,熟练掌握平行线的画法和性质是解题关键.
2、
【分析】
原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.
【详解】
解:(﹣3a2)3+(4a3)2﹣a2•a4
=
=
=
【点睛】
本题主要考查了幂的乘方与积的乘方运算,熟练掌握运算法则是解答本题的关键.
3、
(1)22.5°;
(2)d=2t;
(3)5
【分析】
(1)由轴对称,得到∠ABC=2,利用,得到∠A=3,根据∠A+=90°,求出的度数;
(2)由轴对称关系求出AD=6t,根据,推出∠ADP=∠BAO,证得AP=DP,过点P作PH⊥AD于H,求出OH=AH-AO=2t,可得d与t之间的数量关系;
(3)连接DQ,过P作PM⊥y轴于M,求出∠EAP=∠DPQ=,证明△EAP≌△QPD,推出∠PDQ=∠APE=,得到∠ODQ=90°,证明∠MPF=∠MFP=45°,结合,求出BF=,由,求出t=1,得到OA=1,OD=5,由此求出点Q的横坐标.
(1)
解:∵和关于y轴对称,
∴∠ABO=∠CBO,
∴∠ABC=2,
∵,
∴∠A=3,
∵∠A+=90°,
∴=22.5°;
(2)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:∵和关于y轴对称,
∴∠BAO=∠BCO,
∵,
∴OD=5t,AD=6t,
∵,
∴∠ADP=∠BCO,
∴∠ADP=∠BAO,
∴AP=DP,
过点P作PH⊥AD于H,则AH=DH=3t,
∴OH=AH-AO=2t,
∴d=2t;
(3)
解:∵=22.5°,∠ABC=2=45°,AB=BC,
∴∠BAC=∠ACB=∠ADP=,∠APD=45°,
∵,
∴∠APE=,∠AEP=45°,
∴∠EAP=∠DPQ=,
∵AP=DP,AE=PQ,
∴△EAP≌△QPD,
∴∠PDQ=∠APE=,
∴∠ODQ=90°,
连接DQ,过P作PM⊥y轴于M,
∵∠AEP=45°,
∴∠MPF=∠MFP=45°,
∴MF=MP,
∵,MP=2t,
∴,
∵∠APE=,∠PBF=∠ABO=,
∴∠PBF=∠APE,
∴BF=,
∵,
∴,
得t=1,
∴OA=1,OD=5,
∴点Q的横坐标为5.
【点睛】
此题考查了三角形内角和定理的应用,轴对称的性质,等腰三角形的性质,平行线的性质,全等三角· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
形的判定及性质,勾股定理,求点坐标,综合掌握各知识点并熟练应用解决问题是解题的关键.
4、
(1)购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
(2)该商店共获利530元
【分析】
(1)设购进A型玻璃保温杯x个,根据购进两个型号玻璃保温杯的总价钱是3700元列方程求解即可;
(2)根据单件利润=售价-进价和总利润=单件利润×销量求解即可.
(1)
解:设购进A型玻璃保温杯x个,则购进B型玻璃保温杯(80-x)个,
根据题意,得:35x+65(80-x)=3700,
解得:x=50,
80-x=80-50=30(个),
答:购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
(2)
解:根据题意,总利润为
(50×0.8-35)×(50-2)+(100×0.75-65)×(30-1)
=240+290
=530(元),
答:该商店共获利530元.
【点睛】
本题考查一元一次方程的应用、有理数混合运算的应用,理解题意,找准等量关系,正确列出方程和算式是解答的关键.
5、
(1)证明过程详见解答;
(2)
(3)或
【分析】
(1)先证明四边形是正方形,再证明,从而命题得证;
(2)在上截取,先证明是正三角形,再证明,进一步求得结果;
(3)当时,作于,以为圆心,为半径画弧交于,作于,证明,,可推出,再证明,可推出,从而求得,当时,作于,以为圆心,为半径画弧交于,作于,作于,先根据求得,进而求得,根据,,和,从而求得,根据三角形三边关系否定,从而确定的结果.
(1)
解:证明:四边形是菱形,,
菱形是正方形,
,,
,
,
;
(2)
解:如图1,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在上截取,
四边形是菱形,
,,
是正三角形,
,,
,,
,
,
,
;
(3)
如图2,
当时,作于,以为圆心,为半径画弧交于,作于,
,,,,
,
四边形是菱形,
,
,,
,
①,
,
,
,
②,
由①②得,
,
,
如图3,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
当时,作于,以为圆心,为半径画弧交于,作于,
作于,
,
,
由得,
,
,
,
由第一种情形知:,,
,,
①,②,
由①②得,
,
,
,
,
即,
综上所述:或.
【点睛】
本题考查了菱形性质,正方形的判定和性质,相似三角形的判定和性质,面积法等知识,解题的关键是作辅助线,构造相似三角形.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
价格\类型
A型
B型
进价(元/个)
35
65
标价(元/个)
50
100
相关试卷
这是一份中考专题湖南省怀化市中考数学三年高频真题汇总卷(含答案详解),共31页。试卷主要包含了一元二次方程的根为.等内容,欢迎下载使用。
这是一份中考专题湖南省武冈市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了已知,则的补角等于,如图,下列条件中不能判定的是等内容,欢迎下载使用。
这是一份中考专题湖南省益阳市中考数学三年高频真题汇总卷(含答案详解),共30页。试卷主要包含了如图,在中,,,,则的度数为,下列方程变形不正确的是,一元二次方程的根为.等内容,欢迎下载使用。