初中数学北师大版八年级下册1 等腰三角形多媒体教学ppt课件
展开在“平行线的证明”这一章中,我们给出了哪8条基本事实?
1.两点确定一条直线;2.两点之间线段最短;3.同一平面内,过一点有且只有一条直线与已知直线垂直;4.同位角相等,两直线平行;5.过直线外一点有且只有一条直线与这条直线平行;6.两边及其夹角分别相等的两个三角形全等;7.两角及其夹边分别相等的两个三角形全等;8.三边分别相等的两个三角形全等.
我们从其中的几条基本事实出发证明了有关平行线的一些结论.
运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论.
1.回顾全等三角形的判定和性质;2.理解并掌握等腰三角形的性质及其推论,能运用等腰三角形的性质及其推论解决基本的几何问题.(重点)
定理 两角分别相等且其中一组等角的对边相等的两个三角形全等 (AAS).
问题:你能运用基本事实及已经学过的定理证明上面的推论吗?
弄清楚证明一个命题的一般步骤是解题的关键
证明一个命题的一般步骤:(1)弄清题设和结论; (2)根据题意画出相应的图形;(3)根据题设和结论写出已知和求证; (4)分析证明思路,写出证明过程.
探究一:全等三角形的判定和性质(指向目标1)
已知:如图,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.
证明:∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°),∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E).∵∠A=∠D,∠B=∠E(已知), ∴∠C=∠F(等量代换).∵BC=EF(已知),∴△ABC≌△DEF(ASA).
定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).
根据全等三角形的定义,我们可以得到:
全等三角形的对应边相等,对应角相等.
测试评价(指向目标1)
探究二:等腰三角形的性质及其推论(指向目标2)
问题1:你还记得我们探索过的等腰三角形的性质吗?
这一定理可以简述为:等边对等角.
定理:等腰三角形的两个底角相等.
问题2:你能利用已有的公理和定理证明这个定理吗?
作底边的中线AD, 则BD=CD.
AB=AC ( 已知 ),
BD=CD ( 已作 ),
AD=AD (公共边),
∴ △BAD≌ △CAD (SSS).
∴ ∠B= ∠C (全等三角形的对应角相等).
在△BAD和△CAD中
作顶角的平分线AD,则∠BAD=∠CAD.
AB=AC ( 已知 ),
∠BAD=∠CAD ( 已作 ),
AD=AD (公共边),
∴ △BAD ≌ △CAD (SAS).
方法二:作顶角的平分线
定理:等腰三角形的两个底角相等(等边对等角).
解:∵△BAD≌ △CAD,由全等三角形的性质易得BD=CD,∠ADB=∠ADC,∠BAD=∠CAD.又∵ ∠ADB+∠ADC=180°,∴ ∠ADB=∠ADC= 90° ,即AD是等腰△ABC底边BC上的中线、顶角∠BAC的角平分线、底边BC上的高线 .
证明后的结论,以后可以直接运用.
推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合(三线合一).
∵AB=AC, ∠1=∠2(已知),∴BD=CD,AD⊥BC(等腰三角形三线合一).
∵AB=AC, BD=CD (已知),∴∠1=∠2,AD⊥BC(等腰三角形三线合一).
∵AB=AC, AD⊥BC(已知),∴BD=CD, ∠1=∠2(等腰三角形三线合一).
几何语言:如图,在△ABC中,
测试评价(指向目标2)
解:∵AB=AC,AE平分∠BAC,∴AE⊥BC.∵∠ADC=125°,∴∠CDE=180°-∠ADC=55°,∴∠DCE=90°-∠CDE=35°.又∵CD平分∠ACB,∴∠ACB=2∠DCE=70°.∵AB=AC,∴∠B=∠ACB=70°,∴∠BAC=180°-(∠B+∠ACB)=40°.
解析:(1)过A作AG⊥BC于G,根据等腰三角形的性质得出BG=CG,DG=EG即可证明;(2)先证BF=CF,再根据等腰三角形的性质证明.
证明:(1)如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG,∴BG-DG=CG-EG,∴BD=CE;
(2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC.
1.若等腰三角形的顶角为50°,则它的底角的度数为 .
初中数学北师大版八年级下册1 等腰三角形教学演示ppt课件: 这是一份初中数学北师大版八年级下册<a href="/sx/tb_c94875_t3/?tag_id=26" target="_blank">1 等腰三角形教学演示ppt课件</a>,共18页。PPT课件主要包含了你能证明你的猜想吗,BDCE,证明猜想,∴BMCN,∴CMBN,∴BPCQ,还有其他的结论吗,议一议,怎样证明这一定理呢,等边三角形的性质等内容,欢迎下载使用。
北师大版八年级下册1 等腰三角形教课课件ppt: 这是一份北师大版八年级下册1 等腰三角形教课课件ppt,共21页。PPT课件主要包含了学习目标,复习旧知,求证ABAC,讲授新课,你又可以得到什么等内容,欢迎下载使用。
北师大版八年级下册1 等腰三角形教学演示ppt课件: 这是一份北师大版八年级下册1 等腰三角形教学演示ppt课件,共16页。PPT课件主要包含了学习目标,复习旧知,讲授新课,议一议,例题讲解等内容,欢迎下载使用。