初中数学冀教版七年级下册9.3 三角形的角平分线、中线和高练习
展开基础过关全练
知识点 三角形的角平分线、中线和高
1.下列说法错误的是(M7209003)( )
A.三角形的高、中线、角平分线都是线段
B.三角形的三条中线都在三角形内部
C.锐角三角形的三条高交于一点
D.三角形的三条高、三条中线、三条角平分线都交于同一点
2.(2023河北石家庄栾城期末)如图所示,图中分别画出了三角形的角平分线、中线和高线,其中错误的个数是(M7209003)( )
图1 图2 图3
A.0 B.1 C.2 D.3
3.(2023河北唐山丰润模拟)如图,在△ABC中,∠1=∠2=∠3=∠4,下列说法中正确的是( )
A.AD是△ABE的中线 B.AE是△ABC的角平分线
C.AF是△ACE的高线 D.AE是△DAF的中线
4.【新独家原创】如图,CD⊥AB,AF⊥BC交BC的延长线于点F,BE⊥
AC交AC的延长线于点E,则下列说法不正确的是( )
A.AF是BC边上的高 B.BE是AC边上的高
C.AC·BE=BC·AF D.CD是AC边上的高
5.【一题多变·已知中线求两三角形周长的差】如图,在△ABC中,AB=
8,AC=5,AD是△ABC的中线,则△ABD与△ACD的周长之差为( )
A.2 B.3 C.4 D.5
[变式·已知中线求三角形的周长]如图,AD是△ABC的中线,△ABD的周长为25 cm,AB比AC长7 cm,则△ACD的周长为( )
A.18 cm B.22 cm C.19 cm D.32 cm
6.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,
∠BCE=40°,求∠ADB的度数.
7.如图,在△ABC中,AD为BC边上的高,点E为BC边上的一点,连接AE.(M7209003)
(1)当AE为BC边上的中线时,若AD=6,△ABC的面积为24,求CE的长;
(2)当AE为∠BAC的平分线时,若∠C=66°,∠B=36°,求∠DAE的度数.
能力提升全练
8.(2022浙江杭州中考,5,★★☆)如图,CD⊥AB,交AB的延长线于点D,已知∠ABC是钝角,则( )
A.线段CD是△ABC的边AC上的高线
B.线段CD是△ABC的边AB上的高线
C.线段AD是△ABC的边BC上的高线
D.线段AD是△ABC的边AC上的高线
9.(2023河北石家庄四区联考,1,★★☆)如图,在△ABC中,边AB上的高是线段(M7209003)( )
A.AD B.GE
C.EF D.CH
10.(2023河北平泉期末,7,★★☆)如图,点D、E、F分别为BC、AD、BE的中点,若△BFD的面积为6,则△ABC的面积等于(M7209003)
( )
A.36 B.18
C.48 D.24
11.(2022河北邯郸永年期末,16,★★☆)如图,在△ABC中,BD=15BC,AE=14AD,CF=12CE,S△ABC=30,则S△DEF=( )
A.10 B.9
C.7 D.8
素养探究全练
12.【推理能力】如图,点D为△ABC的边BC的延长线上一点.
(1)若∠A∶∠ABC=3∶4,∠ACD=140°,求∠A的度数;
(2)若∠ABC的平分线与∠ACD的平分线交于点M,过点C作CP⊥BM于点P,试探究∠PCM与∠A的数量关系.
答案全解全析
基础过关全练
1.D A.三角形的高、中线、角平分线都是线段,故原说法正确;B.三角形的三条中线都在三角形内部,故原说法正确;C.锐角三角形的三条高交于一点,故原说法正确;D.三角形的三条角平分线、三条中线分别交于一点,三角形的三条高线所在的直线交于一点,这三个点不一定重合,故原说法错误.故选D.
2.D 题图1,线段BD的端点D不在三角形ABC的边上,故BD不是三角形ABC的角平分线.题图2,线段EQ是三角形BEF的中线,直线EQ不是.题图3,过三角形顶点的线段KM不垂直于顶点K的对边JL,故KM不是三角形JKL的高线.题中三个图都错误.故选D.
3.B ∵∠1=∠2=∠3=∠4,∴∠1+∠2=∠3+∠4,即∠BAE=∠CAE,
∴AE是△ABC的角平分线,故B选项说法正确,其他几个选项均无法根据已知条件推出,故选B.
4.D ∵AF⊥BC,∴AF是BC边上的高,故A选项说法正确,不符合题意;∵BE⊥AC,∴BE是AC边上的高,故B选项说法正确,不符合题意;∵S△ABC=12AC·BE=12BC·AF,∴AC·BE=BC·AF,故C选项说法正确,不符合题意;∵CD⊥AB,∴CD是AB边上的高,故D选项说法不正确,符合题意.故选D.
5.B 由题意知BD=CD,
∴C△ABD-C△ACD=(AB+AD+BD)-(AC+AD+CD)
=AB+AD+BD-AC-AD-CD=AB-AC=8-5=3,故选B.
[变式] A 由题意知BD=CD,
∴△ABD和△ACD周长的差=(AB+BD+AD)-(AC+AD+CD)=AB-AC,
∵△ABD的周长为25 cm,AB比AC长7 cm,
∴△ACD的周长=25-7=18(cm).故选A.
6.解析 ∵AD是△ABC的角平分线,∠BAC=60°,
∴∠BAD=12∠BAC=30°,
∵CE是△ABC的高,∠BCE=40°,
∴∠B=180°-90°-40°=50°,
∴∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°.
7.解析 (1)∵AD为BC边上的高,△ABC的面积为24,
∴12BC·AD=24,
∴BC=2×246=8,
∵AE为BC边上的中线,
∴CE=12BC=4.
(2)∵∠C=66°,∠B=36°,
∴∠BAC=180°-∠C-∠B=180°-66°-36°=78°,
∵AE为∠BAC的平分线,
∴∠CAE=12∠BAC=39°,
∵∠ADC=90°,∠C=66°,
∴∠CAD=180°-90°-66°=24°,
∴∠DAE=∠CAE-∠CAD=39°-24°=15°.
能力提升全练
8.B 线段CD是△ABC的边AB上的高线,故A错误,B正确;线段AD不是△ABC的边BC上的高线,故C错误;线段AD不是△ABC的边AC上的高线,故D错误.故选B.
9.D ∵CH⊥AB,∴在△ABC中,边AB上的高是线段CH.故选D.
10.C ∵F是BE的中点,△BFD的面积是6,∴S△BDE=2S△BDF=12,
同理:S△BDA=2S△BDE=24,S△ABC=2S△BDA=48.故选C.
11.B ∵BD=15BC,∴CD=45BC,∴S△ACD=45S△ABC=45×30=24,
∵AE=14AD,∴DE=34AD,∴S△CDE=34S△ACD=34×24=18,
∵CF=12CE,∴EF=12CE,∴S△DEF=12S△CDE=12×18=9.故选B.
素养探究全练
12.解析 (1)∵∠A∶∠ABC=3∶4,∴可设∠A=3k,∠ABC=4k.
∵∠ACD=∠A+∠ABC=140°,∴3k+4k=140°,
解得k=20°,∴∠A=3k=60°.
(2)∵∠MCD是△MBC的外角,∴∠M=∠MCD-∠MBC.
同理可得∠A=∠ACD-∠ABC.
∵CM、BM分别平分∠ACD、∠ABC,
∴∠MCD=12∠ACD,∠MBC=12∠ABC,
∴∠M=12(∠ACD-∠ABC)=12∠A.
∵CP⊥BM,∴∠PCM=90°-∠M=90°-12∠A.
期中素养综合测试--2024年冀教版数学七年级下册精品同步练习: 这是一份期中素养综合测试--2024年冀教版数学七年级下册精品同步练习,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中冀教版11.1 因式分解当堂检测题: 这是一份初中冀教版<a href="/sx/tb_c41361_t7/?tag_id=28" target="_blank">11.1 因式分解当堂检测题</a>,共8页。试卷主要包含了1 因式分解,下列各式分解因式的结果是的是,把a2-a分解因式,正确的是,若x2+k=,那么等内容,欢迎下载使用。
冀教版7.3 平行线当堂达标检测题: 这是一份冀教版<a href="/sx/tb_c90000_t7/?tag_id=28" target="_blank">7.3 平行线当堂达标检测题</a>,共8页。试卷主要包含了3 平行线,【新独家原创】如图,有下列条件等内容,欢迎下载使用。